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Chapter 1   
 

 

 

Introduction 
 

The objective of this thesis is to develop and implement new decision systems and 

algorithms that will enable a United States Navy unmanned undersea vehicle (UUV) to search 

for and track a moving contact using time-dated measurements.  In other words, we assume that 

the UUV carries a sensor that can detect clues that indicate that the contact has passed by a 

position at a specific time in the past.  The information available to the decision system includes:  

(1) null measurement (i.e., contact not detected at current time), (2) time-dated measurement 

(i.e., clue found at current time that indicates contact was at this location in the past), and (3) 

bearings measurement (i.e., angular measurement towards contact position detected at current 

time).  The results of this thesis will be arrived at by evaluating the best methods to handle the 

three types of information.  The underlying distribution of the contact position space will be 

modeled using a generic particle filter, due to the highly non-Gaussian distributions that result 

from the conditions mentioned above.  Using the particle filter distribution and the measurements 

acquired from the three conditions, this thesis will work towards implementing a dynamic path 

planning algorithm that seeks to minimize the uncertainty in the position of the contact and 

ultimately predict where the contact will move based on current and past position measurements. 

 

1.1      Problem Motivation 
 

With recent advances in research and technology, autonomous vehicle capabilities have 

steadily improved.  These autonomous vehicle technologies, which perform missions and tasks 
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without the direction of human operators, have changed the way scientists and engineers 

approach problems.  Because these robotic devices can work without manned guidance, they can 

execute missions that were too difficult, dangerous, or tedious for human operators to attempt.  

These enhanced and expanded capabilities provided by autonomous control have quickly been 

incorporated into military operations.  The ability of these intelligent machines to operate in 

hostile environments and complete difficult tasks allow the military to decrease manpower, 

lower costs, and limit the risk to human life.  A recent example of the implementation of 

unmanned systems is the United States Air Force’s unmanned aerial vehicle (UAV) referred to 

as the Predator.  In recent combat operations, the Predator has been successful in supporting 

ground operations by providing reconnaissance and surveillance in environments that are 

possibly too risky for ground forces to negotiate.  Although the Predator requires remote human 

control, it demonstrates the advantages that unmanned vehicles can bring to military operations 

[19]. 

Based on the recent success of unmanned vehicles, such as the Predator, in the battlefield, 

the United States government plans to expand its autonomous technologies to naval operations 

through the unmanned undersea vehicle.  The UUV is a self-propelled submersible whose 

operation is either fully autonomous or under minimal supervisory control.  In the past, humans 

have exclusively made mission planning decisions on military vehicles, but in the coming years, 

the United States Navy plans to shift the decision making capability from the human operator to 

an onboard decision system.  As scientists and engineers develop these systems, the difficulty 

rests in the need to translate the thoughts and actions of a human operator to a set of rules and 

behaviors for an autonomous system to follow [7].   

In the future, the United States Navy plans to place these unmanned undersea vehicles in 

critical roles within the battle space.  The Navy needs stealthy and unmanned systems to gather 

information and identify contacts in areas inaccessible by traditional maritime forces [7].  

Mounting threats require the United States to tighten security by closely monitoring the critical 

maritime locations of both the United States and its allies.  Due to the vast surface areas of the 

world covered by water, new assets such as UUVs are needed to patrol important waterways and 

prevent vessels from executing hostile actions from the sea.  The capability to perform these 

missions with UUVs in the future will allow submarine and surface combatants to expand their 

sphere of influence while reducing possible vulnerabilities [20]. 
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Critical missions including intelligence, surveillance, reconnaissance, mine 

countermeasures, tactical oceanography, communications, navigation, and anti-submarine 

warfare are on the verge of being addressed with UUVs.  These autonomous underwater vehicles 

are advantageous in these types of missions because they increase performance, lower cost, and 

reduce risk to human life in manned systems.  These improvements can be realized because of 

the following operational advantages afforded by UUVs: 

 

- Autonomy.  The ability of a UUV to operate independently for extended periods creates 

a force multiplier that allows manned systems to extend their reach and focus on more 

difficult tasks.  Reduced costs are also a result when sensors and weapons are operated 

from smaller platforms like UUVs.  

 

- Risk Reduction. Due to the unmanned nature of UUVs, there is a reduced threat to 

personnel from the environment or enemy combatants.  

 

- Low observability.  As a result of the small size and engineering of UUVs, they can 

operate fully submerged with low acoustic and magnetic signatures.  These covert 

features enable the UUV to put sensors in positions that previously could not be reached. 

 

- Deployability.  UUVs can be designed as flyaway packages or pre-positioned in forward 

areas.  They can be launched from a wide variety of platforms including ships, 

submarines, aircraft, and shore facilities and can be recovered from a different craft than 

they were launched from.  Recoveries may also be delayed or abandoned because of the 

expendability created by the low cost of the UUV.  

  

- Environmental Adaptability.  UUVs can operate in a diverse range of environments 

including deep to shallow water, adverse weather and seas, and tropical or arctic 

conditions [7].     
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Due to the complicated nature of these missions and the environments in which they are 

carried out, there exists a continued need to develop and implement new decision systems and 

algorithms that can handle untested situations and environments.  As the number of advanced 

autonomous vehicles continues to grow, the United States Armed Forces must determine how to 

take advantage of these new technologies in order to perform various missions including, but not 

limited to, surveillance, reconnaissance, and anti-submarine warfare.  Although the technology 

and industrial capacity are ready to proceed, UUV capabilities need to progress before 

confidently deploying them to carry out important missions for the U.S. Navy.  Specifically, this 

thesis will look at expanding the future capabilities of the UUV by enhancing the submarine 

track and trail capability. 

 

1.2      Problem Statement 
 

According the description in the “Navy UUV Master Plan,” the objective of the 

submarine track and trail capability is to patrol, detect, track, trail, and handoff adversary 

submarines to U.S. Forces all the while remaining undetected by the enemy.  Because UUVs can 

be launched from safe distances to accomplish these missions in high-risk areas or water that is 

too shallow for larger, more conventional platforms, they are the logical candidate to perform the 

submarine track and trail mission.  Although the advantages of using UUVs to track and trail 

contacts at sea are numerous, the UUV must be able to operate in hostile areas with dynamic 

threats without taking actions that could inadvertently advance the stage of conflict.  As a result, 

there exists a need to design the decision system aboard the UUV to use all its resources to 

appropriately process any situation that it may face at sea [7]. 

In accordance with The Navy Unmanned Underwater Vehicle Master Plan, Charles Stark 

Draper Laboratory is currently developing a Maritime Reconnaissance Demonstration system.  

Currently, research groups are attempting to expand the search capability of the UUV system.  

Using prior information on the position distribution and the assumed dynamic capabilities of the 

mobile vessel in question, Draper Laboratory seeks to develop a search strategy that effectively 

searches for and detects the moving vessel while remaining covert.   This system will integrate 

automated search strategies with closed-loop planning and control aboard in-water systems.  As 
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the UUV maneuvers through the sea environment, the system will maintain a dynamic position 

distribution for use by the UUV planning system and the onboard automated controller.   

The specific problem to be addressed in this thesis consists of a single UUV searching for 

an unknown contact in an open sea environment.  Initially, we assume that the contact’s location 

is uniformly distributed within a given space.  Although we assume that the contact is contained 

within that space initially, it is not confined to that space as the contact can move freely in all 

directions.  Due to the goal to remain covert, the UUV must also avoid use of traditional sensor 

technology and instead rely on passive sensors.   Although passive sensors may provide little 

information about the location of contact at each time step, the objective of the UUV decision 

support system is to use all available information to plan the best possible path in order to detect 

the position of the contact.  In the end, this thesis will focus primarily on how to appropriately 

use new sensor information to update the position distribution and how to then use the updated 

position distribution to plan an effective path that will maneuver the UUV within the passive 

sonar range. 

 

1.3      Problem Approach 
 

Search and Detection Theory describe classic problems for which applications can be 

found in the military, fishing, mineral exploration, and search and rescue.  Numerous algorithms 

and methods have been developed to aid searchers to achieve fast and accurate detection of the 

unknown or missing object of interest.   

 

1.3.1 Search and Detection Theory 

In Search and Detection, Washburn summarizes many classic search strategies that have 

been applied to naval operations [25].  Many of the optimal search methods have been applied to 

searches for stationary contacts.  In these cases, if the location of the contact is known with a 

given probability distribution, the searcher can guarantee detection by using maneuvers such as 

circle in, circle out, sweep, or movement in a manner that maximizes the probability of detection 

based on the predefined distributions [25].  In many cases though, contacts such as missing 
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persons or lifeboats may move considerable distances during the search.  Dynamics such as these 

add considerable complexity to the search.   Washburn introduces search methods for dynamic 

environments where the search area is confined as well as scenarios when the target’s position at 

some benchmark in time is known with reasonable accuracy.  For the purposes of this thesis, the 

search area is not confined and the initial location of the contact is not known with detailed 

accuracy.  As a result, the contact position distribution will expand as time advances and 

detection will not necessarily be guaranteed. 

 

1.3.2 Guaranteed Detection Conditions 

In order for the sensor vehicle to guarantee detection of the target within the initial search 

space, one of the following two conditions must be met: 

 

1. The sensor must be fast enough to travel twice the length of the search area (i.e., move up 

and back down the length of the search area) before the target can move a distance 

greater than the diameter of the detection region covered in one time step by the sensor.  

In other words, if a target moving at maximum speed along a straight path moves a 

distance greater than the detection diameter before the sensor can sweep back and forth 

across the length of the search area, the target can escape detection.  If this condition is 

met, the sensor can sweep across the search area until the target is detected (see Figure 

1.1). 
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Figure 1.1:  Guaranteed Detection Conditions for Sweep Maneuver 

 

2. Detection can also be guaranteed if the sensor can travel the circumference of the search 

area before the target can move a distance greater than the diameter of the detection area 

covered in one time step.  If this condition is met, the sensor can spiral in until the target 

is detected (see Figure 1.2): 
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Figure 1.2:  Guaranteed Detection Conditions for Spiral-In Maneuver 

 

In reality, a sensor vehicle will probably not be able to travel at speeds fast enough to 

satisfy these conditions.  Therefore attempts to implement these search algorithms will not 

necessarily result in high probabilities of detection.  Consequently, alternative search algorithms 

must be employed by the UUV system. 

 

1.3.3 Current Search Methods  

Before looking at how to approach the search problem when detection is not guaranteed, 

it is good to examine how analogous scenarios are currently accomplished with human operators.  

Some of the best examples of dynamic search scenarios are seen everyday in search and rescue 

operations.  Take for instance a missing hiker scenario.  In this scenario, the search and rescue 

workers must plan a coordinated search by taking into account the following facts:  the mobile 
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hiker is traveling randomly at a known speed and the initial position is distributed according to 

an assumed probability.  Using these pieces of information, the key to a successful search, 

according to Search is an Emergency:  Field Coordinators’ Handbook for Managing Search 

Operations, involves minimizing the search area.  The search area can be kept to a minimum by 

responding quickly and searching for clues not subjects.  Searchers focus the search on clues 

(i.e., time-dated measurements) instead of the specific subject, because there are a larger number 

of clues and the discovery of a clue can significantly reduce the search area in which the missing 

contact is.  Although a clue does not pinpoint the exact location of the target, it can dramatically 

narrow the probability space.  The effect of the clue depends on the “age” of the clue and the 

estimated speed of the target.  If the clue has recently been deposited, the discovery of this clue 

can greatly reduce the search area.  Conversely, the search area will not be reduced to the same 

extent when an older clue is discovered [16].  

Specifically, when a clue is found, the searcher gains additional information about the 

location of the target.  The uncertainty in the target location is reduced, because the searcher now 

knows that the target passed through this point at a particular time in the past.  With that 

information, the new search area is constrained to the distance surrounding the clue that the 

missing contact could have reached based on the age of the clue and the estimated speed of the 

missing contact (see Figure 1.3) [16] 

 

 

Figure 1.3:  Effect of Detected Clue 
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Based on the logic of these search methods, this thesis will attempt to enhance the search 

capability of an autonomous vehicle by modifying the objective of the searches to include 

potential clues left behind by a mobile subject.  If clues can be discovered that reveal the position 

of the object of interest at a point in the recent past, the search area can be limited to the 

immediate area surrounding the clue.  Similar discoveries of clues by an autonomous vehicle 

could considerably reduce the size of the search area and as a result lead to faster detection of the 

contact. 

 

1.3.4 Application of Search Methods 

Using the approaches applied by human searchers, this thesis will focus on how an 

autonomous vehicle should operate when detection is not guaranteed.  Specifically, the thesis 

will look at how a UUV decision system processes the available information and determines 

where to move based on that information.  The UUV sensor technology observes the 

environment surrounding the UUV and uses the information it gains to analyze situations.  As 

the UUV moves through the environment, it can observe one of the following conditions:  (1) 

null measurement (i.e., contact not detected at current time), (2) time-dated measurement (i.e., 

clue found at current time that indicates contact was at this location in the past), and (3) bearings 

measurement (i.e., angular measurement towards contact position detected at current time).  Each 

of these observations provides information about the location of the contact and will help 

constrain the potential position of the contact.  Eventually, the decision system of the UUV 

processes the current and past information in order to form a position distribution representing 

the likely location of the contact at the current time.  The UUV is then able to enumerate and 

analyze the impact of future actions on the position distribution of the contact.  Based on the 

anticipated effect of these future actions, the decision support system will choose the action that 

most effectively satisfies the objective of the search, and the UUV will execute the decision and 

move accordingly.   

This thesis will concentrate on implementing a decision support system that will enhance 

the search capability of an autonomous vehicle.  The research presented in this thesis will 

contribute to the Charles Stark Draper Laboratory’s continued research on the Maritime 
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Reconnaissance Demonstration system.  In order to improve the current capabilities to include 

the ability to detect clues, this thesis will first consider how to represent the search space 

probabilistically.  With the available information, the probabilistic model of the search space 

must correctly illustrate the potential contact positions.  With an appropriate probabilistic model 

of the search space, the remainder of the thesis will focus on designing a decision support system 

for autonomous vehicles.  The resulting dynamic search algorithms provided in the thesis will 

compute the appropriate course and speed commands for the UUV to follow in order to 

effectively decrease the search area and minimize the uncertainty in the distribution of the 

contact’s position. 

 

1.4      Contributions 
 

The work in this thesis will contribute to the future advancement of the submarine track 

and trail capability discussed earlier.  Specifically, this thesis proposes a new search algorithm 

that exploits the unique structure of particle filters.  By taking advantage of the sample-based 

distribution produced by the particle filter for path planning and controls, the dynamic decision 

system expands the search and detection capabilities within the following problem areas: 

 

Complex and Dynamic Information 

Due to the limited information gained from the measurements in this search problem, the 

probability distributions can evolve into multi-modal distributions.  In addition, the assumption 

that the contact is in motion causes the distributions to become even more complex as they will 

change over time.  To account for this complex and changing information, the distributions must 

be modeled correctly and intelligent motion plans must be designed.  The work in this thesis will 

utilize the sample-based particle distributions to maintain the complex distributions.  

Additionally, the structure of particle distributions allow the information to be clustered when 

designing motion plans.  The cluster-based action space will provide more tractable motion plans 

that can consider larger portions of the search space. 
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Time-Dated Measurements 

Given the assumed capability to detect time-dated measurements (i.e., clue 

measurements), this search algorithm possesses a measurement model to handle these 

measurements within the context of the particle filter structure.  This measurement model 

determines the information contained within a clue measurement and uses the information to 

properly update the probability distribution.  

 

The advancements made in this research will lead to continued development of the 

artificial intelligence of Navy UUVs which could potentially be used in future real-world search 

applications. 

 

1.5      Organization 
 

The remainder of this thesis is divided into seven chapters.  Chapter 2 presents the 

concept of operations for UUVs in submarine track and trail missions and introduces a scenario 

in which this future capability can be analyzed.  Chapter 3 presents the background into general 

state estimation, while Chapter 4 investigates the use of particle filtering techniques to process 

specific sensor measurements and provide an estimate of the contact’s position.  Chapter 5 

introduces a dynamic search algorithm that analyzes the position distribution of a contact and 

directs a UUV along paths that reduce the uncertainty in the position of the contact and 

ultimately place the UUV in a position to begin track and trail operations.  Chapters 4 and 5 will 

be the major contributions made by this thesis.  Chapter 6 will provide examples of how the 

algorithm presented in Chapter 5 can be used by a UUV during a search and detection operation.  

Chapter 7 provides conclusions and suggestions for future work. 
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Chapter 2   
 

 

 

Submarine Track and Trail Operational 

Description 
 

As mentioned in the United States Navy UUV Master Plan, the vision of future United 

States naval operations involves the use of unmanned underwater vehicles for many key mission 

areas.   Specifically, the research in this thesis will attempt to enhance the future search and 

detection capabilities of a UUV within the framework of the submarine track and trail mission.  

Although it is conceivable to envision a UUV autonomously searching, detecting, tracking, 

identifying, and targeting hostile contacts, these application areas remain several years in the 

future [7].  In planning for these future operations, it is important to develop reasonable scenarios 

in which to test the perceived capabilities.  Therefore, a feasible scenario must be designed 

within this thesis in order to examine potential improvements to the UUV decision support 

system.   The remainder of this chapter will discuss the development of a submarine search and 

detection scenario that will appropriately assess the research presented in this thesis.  

 

2.1      Concept of Operations 
 

Based on previously obtained intelligence in these regions, it is assumed that certain 

information about the operating environment as well as the readiness and capabilities of 

opposition forces are known.  By taking advantage of the operating environment, it is assumed 

that a fixed sensor network is in place near a strategic naval chokepoint or port entry (Figure 2.1) 

[7].   
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Figure 2.1:  Potential Sensor Network Placement 

 

The sensors in this network will monitor traffic through the corridor.  The sensors are 

assumed to detect vessels moving through the network, but the precise position and course of 

possible adversaries remain unknown.  At the moment a potentially hostile contact passes 

through the seaway, patrolling UUVs in the area will be informed and expected to respond [15].  

Due to the limitations caused by bathymetry and a possible lack of air superiority in certain 

coastal regions, UUVs may be the best option for manned submarines to project power deeper 

into these littoral environments [7]. 

As the primary sensor platform for the submarine track and trail mission, UUVs will be 

tasked with the objective to patrol, detect, track, trail, and handoff adversarial vessels to nearby 

conventional forces [7].  Due to the nature of the search environment, this UUV capability is an 

important component in anti-submarine warfare [7].  When dealing with underwater contacts, 

such as submarines, it is best to be in the position of first to act [7].  Dominance is not possible in 

reactive submarine warfare.  If hostile contacts are not identified before they reach open sea, the 

likelihood of detection significantly decreases.  As a result, one of the more crucial elements of 

the submarine track and trail mission is the search and detection phase.  Immediately upon being 

notified of a contact making aggressive actions, a UUV will launch from a substantial distance 

and transit into the search area [7].  Based on information such as the position distribution and 

the assumed speed of the adversary vehicle, the UUV will patrol the area of interest and attempt 

to effectively search for and detect the contact.  Therefore, the UUV must be able to maneuver as 
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necessary to detect the contact and upon detection begin a trailing operation until the contact has 

been classified [7].  At this point in the mission, the UUV will communicate to auxiliary military 

forces the position of detection and that a trail had been initiated (see Figure 2.2) [7]. 

 

 

Figure 2.2:  Submarine Track and Trail Operations 

 

 

2.2      Scenario Description 
 

In order to test the performance of the UUV decision support system, it is necessary to 

design a scenario that appropriately models the future UUV support operations.  Based on the 

concept of operations, the modeled scenario provides a search environment and contact 

dynamics which are representative of likely events and produce situations that are challenging to 

the autonomous controllers aboard the UUV.  Specifically, the scenario involves the use of one 

UUV to search and detect the position of a potentially hostile vessel.  Upon the recognition of a 

hostile contact moving through a pre-positioned sensor network, the UUV in this scenario will be 
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tasked with locating the contact in order to begin a trailing operation.  Due to the perceived threat 

of the contact, the naval forces in the area need to monitor the movements and possible 

intentions of the contact.  In addition, the UUV must remain covert and undetected by the 

contact, and therefore active sensor technology will not be made available.  Consequently, this 

scenario will test the ability of the UUV decision support system to use the limited passive 

sensor measurements available to maneuver within range and begin a trailing operation.   The 

remainder of this section familiarizes the reader with the search environment and the contact 

dynamics within the context of this specific scenario. 

   

2.2.1 Description of Search Environment 

As the map in Figure 2.3 illustrates, the UUV in this scenario will be tasked with 

searching in both littoral and open sea environments.  These different environments cause 

challenges to naval forces and create situations that will test the robustness of the UUV decision 

support system.  For example, due to the constraints imposed by the littoral environment, it is 

easier to deduce the position of the contact, but maneuvering through the swallow water depths 

and obstacles is much more difficult than an open sea environment.  On the other hand, the open 

sea provides greater maneuverability, but it also allows more freedom for the contact to move 

and as a result, makes it difficult to determine the location of contact. 
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Figure 2.3:  Scenario Map 

 

The map contains several environment constraints that challenge the decision support 

system aboard the UUV but can be exploited by properly designing the autonomous system.  

These key environmental constraints can be seen in detail in Figure 2.4.   

 

 

Figure 2.4:  Key Environmental Constraints of Scenario Map 



30 

 

These elements include the naval chokepoint, the seaway, and the channel passage.  The 

naval chokepoint consists of a main waterway or port entrance that possesses a shipping lane that 

vessels in the region must travel through to reach the open sea.  Due to the natural constraints 

imposed by the chokepoint, it seems like a logical area to closely observe through some form of 

surveillance such as satellite imagery or a pre-positioned sensor network [15].  Based on 

observations acquired through the surveillance of the chokepoint, an initial distribution of the 

contact position can be generated. 

The other features of the littoral environment which provide natural constraints for 

maneuvering vessels in the region include:  the seaway and channel passage.  According to the 

map for this scenario, these two waterways are the only possible passages into the open sea due 

to the position of island beyond the naval chokepoint (see Figure 2.4).  Because of the distinctive 

size and depth of the waterways, the ability to navigate the waterways varies significantly.  In 

this particular scenario, it is assumed that the seaway is much more navigable than the channel 

passage.  Therefore, the number of passable routes is much lower through the channel, and 

consequently the likelihood that the contact will choose that route is much lower than the 

seaway.    

 

2.2.2 Description of Contact Dynamics 

The next aspect of the scenario involves the assumed contact dynamics.  For this 

scenario, the contact motion is assumed constant and linear with inputs along the route that 

correspond to maneuvers needed to avoid obstacles and proceed towards the targeted location.  

Given this particular motion model, the two important factors in predicting contact motion 

include heading and speed.  The assumed speed is based on the known capability of the vessel 

discovered moving through the chokepoint.   

The initial heading of the contact is unknown.  Initially, the contact moves through the 

seaway or the channel passage.  Based on the differences in the ability to navigate each passage, 

it is assumed that the contact will pass through the sea passage with a higher likelihood.  After 

the initial decision, it is assumed that the contact moves towards one of three potential goal 
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locations (i.e., Goal A, Goal B, or Goal C).  These potential targets are located beyond the open 

sea and are equally likely to be targeted by the contact (see Figure 2.3).  The decision to move 

toward a specific goal location is assumed to be independent of the decision to travel through the 

seaway or channel.  Therefore, regardless of the initial route taken by the contact, there exists an 

equal probability that the contact will head towards any one of the three potential targets.  A map 

showing the assumed contact dynamics is featured below (see Figure 2.5).  

 

 

Figure 2.5:  Detailed Description of Contact Dynamics 

 

2.2.3 Description of UUV Mission  

With the description of the search environment and the contact dynamics previously 

introduced, this section will focus on the mission of the UUVs with respect to submarine track 

and trail operations.  In general, the mission of unmanned undersea systems is force projection 

[15].  UUVs allow the U.S. Navy to expand its operational concept of “Forward…From the Sea” 

by extending the reach of sensors to the shallow waters that are denied to traditional submarines 

[15].  In other words, sensor-carrying UUVs can be launched from a safe distance and extend the 

detection range of traditional naval vessels without increasing the risk to manned assets [7].  To 
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extend the general case further, the deployed UUV would then use known chokepoints and 

contact movements to maneuver as necessary to classify targets and begin a trailing operation 

[7]. 

For this particular scenario, the UUV is launched from a position outside the littoral 

region upon notification that a hostile contact has moved through the pre-positioned surveillance 

network (see Figure 2.6).   

 

 

Figure 2.6:  Detailed Description of Initial Stages of Scenario 

 

Due to the high threat levels within the coastal regions and the limited endurance of the 

UUV, it might be too risky for a UUV platform to patrol continuously within the coastal waters.  

Therefore, a UUV will be commanded to enter the littoral region only when necessary.  Despite 

the increased risk, a deployed UUV must enter the littoral region in order to take advantage of 

the environmental constraints and narrow the position distribution of the contact.  While the 

UUV could patrol beyond the island and wait for the contact to enter the open sea, the contact 

position distribution would expand beyond an area that can reasonably be searched.  Reactive 

posture is not effective in search operations, because the search area expands as time passes [7]. 
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After being launched from a safe distance, the UUV is ultimately tasked with 

maneuvering within passive sonar range where bearing measurements can be detected and used 

for tracking the contact.  The ability to achieve this objective depends on the ability of the UUV 

to process information made available through the on-board sensors.  Depending on the relative 

positions of the UUV and the contact, the UUV sensors will generate one of the following 

measurements:  (1) null measurement (i.e., contact not detected at current time), (2) time-dated 

measurement (i.e., clue found at current time that indicates contact was at this location in the 

past), and (3) bearings measurement (i.e., angular measurement towards contact position 

detected at current time).  The sensors aboard the UUV can only return these pieces of 

information due to the necessity to remain covert throughout the mission.  These measurements 

allow the UUV to remain stealthy, because they originate from passive sensor technology and do 

not provide a signal that enemy vessels could detect.     
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Chapter 3   
 

 

 

State Estimation 
 

Estimation is the process of extracting information from imperfect data.  Estimation 

methods determine the desired information from measurements while taking into consideration 

measurement errors, the effects of disturbances and control actions on the system, and any prior 

knowledge of the information [8].  In the context of state estimation, measurements, typically in 

the form of noisy sensor measurements, are used to acquire the relevant state variables such as 

position, velocity, or heading.  Based on this concept of estimation, this chapter will discuss the 

general theory behind two common state estimation techniques, Kalman filters and particles 

filters.  After a basic introduction of the two estimation techniques, the strengths and weaknesses 

of both techniques will be discussed along with the conditions that define when each technique 

should be utilized.  Work in this chapter and the remainder of this thesis will be restricted to two-

dimensional motion for convenience. 

 

3.1 State Estimation Models 
 

This section will outline general motion and measurement models used in common 

navigation and tracking applications.  Before estimating the contact state, it is important to 

identify the appropriate assumptions and model the known information about the contact 

dynamics and behavior as well as the relationship between the state variables and the 

measurements.  These assumptions and models must closely resemble the true behavior of the 

contact in order to generate an accurate estimate of the state variables.      
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3.1.1 Motion Model 

Central to every navigation and tracking application is the motion model to which 

different model based filters can be applied.  For the most part, state estimation problems are 

related in that they can be described by quite similar state space models, where the state vector 

contains the position and derivatives of position.  Traditional methods are based on linearized 

models and Gaussian noise approximations so that the traditional filter methods can be applied 

[12].  In the linearized motion model, the underlying model attempts to estimate the state nx ℜ∈  

of a discrete-time controlled process that is governed by the following linear stochastic 

difference equation: 

 

kkkkkk wuBxAx ++=+1 ,    (3.1) 

 

where the matrix Ak relates the state at time step k to the state at step k+1 and B relates the 

control input u to the state x.  In addition, the process noise is contained within the variable kw  

[26]. 

Due to the complexity of many real world problems, the object being estimated often 

does not follow a linear track.  In these cases, the linear motion assumption does not hold, and 

the motion model must represent the more complex non-linear motion.  The state vector is yet 

again nx ℜ∈ , but now the time controlled process is governed by the non-linear stochastic 

difference equation [26]: 

 

),,(1 kkkkk wuxfx =+ .     (3.2) 

 

In this case, the non-linear function ),,( kkk wuxf defines the relationship between the state at 

time step k to the state at time step k+1. 
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3.1.2 Observation Model 

For the purposes of state estimation, measurements are used to provide feedback about 

the relative state of the object of interest.  Typically, measurements relate the position of one’s 

own platform to another object’s position.  Depending on the nature of the measurements, the 

equation relating the respective positions can take several forms.  For a measurement mz ℜ∈  

whose relationship to the state variables is linear, the following general equation describes the 

relationship between the estimate of the state and the measurement: 

 

kkkk vxHz += ,     (3.3) 

 

where the matrix Hk relates the state vector, kx , to the measurement and kv  represents the 

measurement noise [26]. 

For other measures, such as bearing measurements, the relationship of the measurement 

to the estimated state is characterized by a non-linear relationship.  In these situations, the 

measurement is governed by the non-linear equation: 

 

 ),( kkkk vxhz = ,     (3.4) 

 

where the non-linear function ),( kkk vxh  defines the relationship between the measurement and 

state at time step k [26]. 

 

3.2 Recursive Bayesian Estimation Techniques 
 

As defined previously, estimation is the process of extracting information from imperfect 

data.  The work in this thesis must utilize state estimation techniques to estimate the state of the 
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contact, because no functional form of the state exists.  The state variables cannot be estimated 

directly and therefore must be represented probabilistically.  In order to arrive at the probability 

distribution of the state at time step k+1 given the set of available observations at current time k, 

the posterior distribution )( 1 kk Zxp +  must be approximated through Recursive Bayesian 

Estimation.  Given that the set of available observations at time k is given by },...,{ 0 kk zzZ = , 

the Bayesian solution to the posterior distribution is described by the following expression [9]: 

 

∫ ++ = kkkkkkk dxZxpxxpZxp )()()( 11 ,   (3.5) 

 

where the distribution, )( kk Zxp , is defined by [9]: 
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All state estimation techniques will be derived from these initial Bayesian equations. 

While many implementations of target tracking algorithms have proven successful for 

state estimation, this section will examine two accepted techniques for state estimation:  Kalman 

filters and particle filters.  After reviewing these methods, this section will conclude with an 

explanation as to why particle filters are better suited for state estimation when using the passive 

sensor technology discussed in this thesis. 

 

3.2.1 Kalman Filters 

Over the last half century, Kalman filters have dominated the field of estimation.  Since 

R.E. Kalman introduced the recursive solution to the linear filtering problem in 1960, the 

Kalman filter has been the subject of extensive research and application [26].  The filter is very 

powerful, because it can maintain estimates of past, present, and future states even though the 



39 

exact nature of the modeled system may be unknown [26].  Specifically, the Kalman filter is a 

set of mathematical equations that function recursively to provide efficient solutions of the least-

squares method.   The underlying model attempts to estimate the state nx ℜ∈  of a discrete-time 

controlled process that is governed by the linear stochastic difference equation as in (3.1) using a 

measurement mz ℜ∈  with a linear relationship with the state variables as in (3.3) [26].  This 

model holds under the following strict assumptions: 

 

1. Linear process model 

2. Linear measurement model 

3. Gaussian probability density after every time step. 

 

When these assumptions hold, no algorithm can perform better than the Kalman filter [26]. 

Often real world problems cannot be modeled with linear process and measurement 

models, and as a result, the discrete Kalman filter leads to inaccurate estimates.  In these cases, 

the state vector is again nx ℜ∈ , but now the time controlled process is governed by a non-linear 

stochastic difference equation as in (3.2) and the measurement is described by a non-linear 

relationship as in (3.4). 

When either the process to be estimated or the measurement relationship are non-linear as 

in the previous equations, an adapted Kalman filter known as the extended Kalman filter (EKF) 

can be successfully implemented.  The EKF uses linearized mathematical models for both the 

state error dynamics and the measurement relationship by taking partial derivatives of the 

process and measurement functions in order to compute estimates about the current mean and 

covariance [10].  These approximations allow the extended Kalman filter to recursively estimate 

the state vector despite the non-linear relationships. 

The process and measurement models for both the Kalman filter and the extended 

Kalman filter are used to estimate the state variable.  The filter estimates the process state at time 

k and then obtains feedback in the form of noisy measurements.  As a result, Welch and Bishop 

categorize the equations for the Kalman filter into two groups:  time update equations 

(“prediction”) and measurement update equations (“correction”).  The prediction equations 

project the current state and error covariance estimates forward in time to obtain a priori 
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estimates for the next time step.  The correction equations provide the feedback for the predicted 

state by including a new measurement into the a priori estimate to obtain an improved a 

posteriori estimate.  The overall estimation algorithm cycles through the prediction and 

correction phases as seen in Figure 3.1 to continually update the estimation of the state variables 

over time [26]. 

 

 

Figure 3.1:  Kalman Filter Cycle 

 

For a detailed description of the specific equations used by Kalman and extended Kalman filters 

in target tracking refer to Bar-Shalom or Gelb [2] [8]. 

 

3.2.2 Particle Filters 

In recent years, an alternate state estimation technique known as a Sequential Monte 

Carlo (SMC) method has been applied to numerous problems.   SMC methods that are used 

within a Bayesian framework have been referred to as bootstrap filtering, the condensation 

algorithm, particle filtering, interacting particle approximations, and survival of the fittest.  For 

the sake of simplicity, the remainder of the discussion will refer to this approach as particle 

filtering.  For a more detailed description of particle filters refer to Doucet, de Freitas, and 

Gordon [5].   

Although the particle filter process follows the recursive Bayesian approach to dynamic 

state estimation, the process is much different than the approach utilized by Kalman filters.  

Kalman filters use the predicted state and measurement data in conjunction with an exact 
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analytical expression to compute the parameters of the evolving sequence of Gaussian posterior 

distributions.  Contrary to Kalman filtering which assumes Gaussian posterior distributions, 

particle filtering creates a sample-based representation of the entire probability density function 

[10].  The sample-based representation is constructed by using a set of random samples of the 

state with associated importance weights.  These weighted particles can then be used to build 

point mass representations of the probability densities.  Because the probability densities are 

generated from the set of random samples, this filter can be applied to any state space model (i.e. 

non-linear and non-Gaussian) [12].  As the probability densities are computed, estimates of the 

state can then be derived using the state of each particle and magnitude of its weight [22]. 

 

3.2.2.1 State Parameters 

In contrast to other state estimation techniques, particle filters create a sample-based 

distribution from which the state of the contact can be estimated.  In order to generate the 

sample-based distribution, particle filters simulate a set of M state samples called particles.  The 

state estimates for each particle consist of descriptive variables, i
kX , that would be found in 

typical state estimates (i.e., position, speed, heading) as well as importance weights, i
kw , for each 

particle i at time k.  Therefore, the state of each particle is defined as [22]: 

 

MiwXS i
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i
k

i
k ...1],[ =∀= .    (3.7) 

 

The weight defines the contribution of this particle to the overall estimate of the variable 

[22].  Thus, the higher a particle is weighted, the greater influence it has on the probability 

density function as particle i represents 
∑

i

i
k

i
k

w
w

 of the probability mass.  Collectively, these 

particles create a sample-based representation, { }M
i

i
kk SS 1==  which leads to the complete 

probability density of the state [22].   



42 

 

3.2.2.2 Generic Particle Filter Algorithm 

This section introduces the basics of the generic particle filter algorithm.  The generic 

particle filter algorithm operates by cycling through the following three stages:  (1) prediction, 

(2) measurement update, and (3) resample in order to generate a numerical approximation to the 

posterior distribution )( 1 kk Zxp +  (see Figure 3.2) [5].  Given the general motion models and 

measurement models introduced previously, the following section discusses each of these stages 

and explains how the particle filter generates the sample distribution that appropriately models 

the current state of the contact.  

 

 

Figure 3.2:  Recursive Particle Filter Algorithm 

 

3.2.2.2.1 Initialization 

Before implementing the particle filter algorithm, the initial probability distribution must 

be established.  Based on historical information or current intelligence, an initial probability 

distribution of the state vector, 
0xp  can be assumed.  From this information, the initial particle 

distribution will be formed by simulating a set of M particles according to the parameters of the 

assumed distribution.  As a result, there will be more particles within areas with higher 
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likelihoods of detection.  Ultimately, this particle distribution defines the initial state space, 

{ }M

i
iS 10 = . 

 

3.2.2.2.2 Prediction 

Based on the a priori particle distribution and the set of measurements collected prior to 

time k, the prediction phase attempts to predict the current probability distribution as depicted in 

the following expression [9]: 

 

∫ −−−−− = 11111 )()()( kkkkkkk dxZxpxxpZxp .   (3.8) 

 

Using the a priori particle distribution and the assumed motion model, the predicted 

probability distribution can be found by simulating the effect on each particle.  After propagating 

each particle one time step ahead, the new set of particles collectively forms a prediction of the 

state distribution at time k+1 [10].   

For the simple case of constant linear motion, the linear motion model stated earlier can 

be used to propagate the particles according to the following system of equations: 
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where the assumed state variables consist of position and speed.  This model propagates each 

particle according to a constant linear process model with Gaussian noise applied to the 

velocities of the particles to account for disturbances in the contact heading direction.  
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3.2.2.2.3 Measurement Update 

After propagating the particles ahead one time step, data is processed in the form of a 

new measurement of the surrounding environment at time k.  This phase attempts to update the 

current probability distribution based on the measurement received at time k as represented in the 

following expression [9]: 

 

)(
)()(
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1

1

−

−=
kk

kkkk
kk Zzp

Zxpxzp
Zxp     (3.10) 

where  

∫ −− = kkkkkkk dxZxpxzpZzp )()()( 11 .   (3.11) 

 

This probability distribution can be approximated by updating the particle weights 

according to the likelihood of receiving the measurement kz  given the particle state.  This 

likelihood function can be used to update the particle weights according to the following 

expression [12]: 

 

Mixzpww i
kk

i
k

i
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Depending on the type of measurement received, the particle filter will apply the 

appropriate measurement model to properly compute the likelihood function and update the 

particle weights.  Upon updating the weight of each particle, the weights accurately describe the 

complete probability density function. 

 

3.2.2.2.4 Resampling 

The final step in the particle filter algorithm involves resampling the particles.  Without 

this step in the basic algorithm, a few particles tend to dominate after a few iterations.  As this 
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phenomenon persists a large computational effort is devoted to updating particles whose 

contribution to the approximation to the posterior filtered density is almost zero.  This problem is 

alleviated by resampling the particles during the particle filtering process [22]. 

The importance resampling process consists of probabilistically eliminating particles with 

small weights and duplicating the particles with larger weights.  Specifically, M samples will be 

selected with replacement from the set { }M
i

i
kS 1= , where the probability of choosing a sample i is 

equal to i
kw  [12].  At the conclusion of the resampling step, a new set of particles with identical 

weights will be created with a higher concentration of particles around the areas of higher 

probability.  Although this process leads to a more accurate description of the contact state, 

eliminating particles with lower weights causes the completeness of the distribution to be lost.  

The effect of importance resampling in the particle filter process is illustrated in Figure 3.3 [23]. 

 

 

Figure 3.3:  Particle Filter Illustration 
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3.3 Comparison of State Estimation Techniques 
 

Both Kalman filters and particle filters are useful tools in state estimation.  The degree of 

success that each filtering algorithm achieves depends on the nature of the application.  For 

applications where linear motion models, linear measurement models, and Gaussian distributions 

can appropriately model the real system, the Kalman filter provides the optimal estimation of the 

state.  Even in applications with non-linear motion or measurement models, but sufficiently 

linear error behavior, the extended Kalman filter provides an adequate estimation of the state.  

Increasingly though for many complex application areas it is becoming important to include 

highly non-linear and non-Gaussian elements in order to accurately estimate and model the 

dynamics of a system.  Unfortunately, the Gaussian assumptions required to apply the extended 

Kalman filter do not hold in many practical application areas.  Given that the extended Kalman 

filter assumes that the probability density function is Gaussian, the true density must meet the 

Gaussian assumption in order for the extended Kalman filter to guarantee sufficient results.  If 

the true density is non-Gaussian (i.e. bi-modal or skewed), then an assumed Gaussian 

distribution will not provide a complete description of the state space, and the extended Kalman 

filter will not perform as well as other filters. 

On the other hand, the more non-linear the motion or measurement models or more non-

Gaussian the posterior distribution, the greater the potential application of particle filters [12].  

Because particle filters are not bound by Gaussian assumptions, they can approximate an optimal 

solution numerically based on Monte Carlo simulations of the physical model [12].  The sample-

based distributions produced by the particle filter can take any form and therefore can be used to 

estimate all types of problems.   Although the particle filter can be utilized in these complex 

application areas, the simulations require a significant amount of computational power as the 

number of particles and the sampling rate increases.  Therefore, for highly non-linear and non-

Gaussian models where computational power is cheap, the particle filter can be applied with high 

levels of success [12]. 

Given the complex nature of the operating environment and the information obtained 

with the assumed passive sensor aboard the UUV, many times the most representative posterior 

distributions are non-Gaussian.  As a result, the assumed Gaussian distribution of the EKF will 
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provide a poor description of the state distribution.  Therefore, it is advantageous for the UUV 

decision system to use particle filters for state estimation while searching for naval vessels using 

passive sensor technology.  Without the range or bearings measurements obtained with 

traditional sonar, point estimates for target position will not be attainable.  Instead, the only 

measurements available to the sensor will be time-dated position measurements.  The 

information contained in these observations lead to distributions that are best represented with 

the sample-based distributions of the particle filter. 
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Chapter 4   
 

 

 

Contact State Estimation Using 
Passive Sensor Technology 
 

In order for the autonomous system to make intelligent decisions, it must first properly 

observe and model the surrounding environment and the relevant contacts.  In the submarine 

track and trail role, a UUV must be able to estimate the states of the surrounding contacts and 

know how accurate those estimates are before any maneuver decision aid can direct the UUV 

towards the correct destination.  The purpose of this chapter is to discuss how to appropriately 

estimate the state parameters based on the sensor measurements available to the UUV.  The 

discussion will begin with an introduction to the information collected by the assumed sensor 

technologies aboard the UUV.   Based on the information obtained through measurements of the 

surrounding environment, the rest of the chapter will detail how the decision system aboard the 

UUV processes information and provides an estimate of the contact state.   

 

4.1      UUV Sensor Technology 
 

A decision support system must be able to observe the surrounding environment and use 

the information it gains to analyze the situation.  In order to accurately estimate the state of the 

contact, the UUV decision support system needs an understanding of the information that it is 

able to acquire with its on-board sensors.  The following section will familiarize the reader with 

the information obtained through traditional naval sonar and introduce additional pieces of 

information that we assume the UUV can collect.   
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4.1.1 Range and Bearing Measurements 

With sonar as the primary sensing technology used by the U.S. Navy, undersea platforms 

typically are able to detect and track contacts using range and bearing measurements.  The two 

types of sonar used are active and passive.  Active sonar operates by generating a directed sound 

pulse and measuring the time delay of the reflected return off objects in the environment [21].  

The distance to the object or range can be calculated using knowledge of the speed of sound and 

the pulse duration.  The direction of the object relative to the sensor or bearing can be determined 

by knowing where the sound pulse was directed.  Although active sonar produces two 

measurements useful in tracking, the pulse of sound created by the sonar can be heard by other 

contacts at sea, revealing the UUV position [19].  In contrast to active sonar, passive sonar relies 

on being able to detect acoustic signals emitted by other objects [21].  When within the operating 

range of passive sonar, contacts can be tracked using bearings measurements.  Because passive 

sonar listens and collects bearings measurements without transmitting a signal, it reduces the 

likelihood of counter-detection and thus is more effective in military operations [19]. 

 

4.1.2 Time-Dated Position Measurements 

The need to remain covert in track and trail problems rules out the use of active sonar.  

When contacts can be detected with passive sonar, bearing measurements allow the UUV to 

perform track and trail operations; however, during the search and detection phase of the 

mission, contacts might maneuver out of the reach of traditional passive sonar technologies.  

Under these circumstances, the performance of the decision support system could be 

significantly enhanced with additional passive sensor information.   

When faced with a similar scenario, typical search and rescue operations focus the search 

on clues instead of a specific missing subject, because numerous clues exist in comparison to 

subjects, and the discovery of a clue can significantly reduce the search area.  Based on this 

reasoning used in standard search procedures, we understand that the existence of clues and the 

ability to detect these clues could greatly reduce the potential areas in which the targeted vessel 

could be located.  Therefore, throughout the remainder of the thesis, we assume that as the 

suspected contact moves throughout the maritime environment it leaves behind clues that mark 
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its trail.  Although the exact nature of these clues is not specified, we assume that the clues are 

present in a form detectable by a sensor aboard the UUV. 

Specifically, as the contact continues on its track, a clue is set down periodically and 

remains stationary at the point of deposit.  Although clues are left behind at regular intervals, the 

contact is not guaranteed to deposit a clue at every point in time.  Instead the contact deposits 

clues according to an assumed deposit probability f, which is equal to the probability that a 

contact leaves a clue behind within the current time.  The percentage of occurrences is 

independent and identically distributed for each time step. 

 

 

Figure 4.1:  Clue Deposit Frequency 

 

Once deposited, the clues will stay fixed at the point of deposit and remain detectable for 

a given amount of time depending on the decay rate of the clue.  In addition, throughout the 

entire thesis, we will assume that the strength of clue signal decays exponentially (see Figure 

4.2).  Consequently, as the time stamp on each of the clues grows older, the ability to detect the 

clue becomes increasingly difficult. 
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Figure 4.2:  Exponential Decay of Clue Signal Strength 

 

Finally, we assume that the UUV possesses the capability to collect the time-dated 

position measurements, α
kz  or “clues” that reveal the position of a contact at a specific time k - α 

in the past, where α represents the age of the clue.  In particular, if the UUV passes a deposited 

clue within its indicated detection range, d, it can generate a measurement that identifies the 

position and age of the clue.   

In reality, all sensor technologies have missed detection rates.  Sensor missed detection 

rate is defined as the probability of no detection given that a clue does exist.  Due to the assumed 

exponential decay rate of the clues, as the clues become older, the sensor detection rate (i.e., the 

probability that the sensor can detect the clues) exponentially decreases (see Figure 4.3). 
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Figure 4.3:  Sensor Detection Rate - Probability of Clue Detection Given that a Clue Exists 

 

Upon detecting a clue, the UUV receives a measurement specifying the position and age 

of clue.  While it is assumed that these measurements are highly accurate, the exact position and 

age of the detected clue contains uncertainties.  The effect of both these uncertainties is very 

similar.  Because the uncertainties in both position and age expand the new search area defined 

by the identified clue, we will focus only on the uncertainty in position in order to simplify the 

state estimation.  For this particular problem, we assume that the uncertainty in clue position is 

normally distributed in the x and y direction around the detected clue position with standard 

deviations denoted by ( )yx σσ ,  where these uncertainties are not necessarily the same (see 

Figure 4.4). 
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Figure 4.4:  Uncertainty in the Clue Position 

 

As a result, the potential distance in which the contact may have moved from the time of 

the clue deposit will increase.  As can be seen in Figure 4.5, there exists a small probability that 

the contact is located beyond the farthest distance the contact could have traveled since the clue 

was deposited.   

 

 

Figure 4.5:  Probability Distribution of Contact Position after Detection of Clue 
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Using these assumptions and the information they provide, we must determine how to 

model the capability to detect clues and determine how these clues enhance the ability of a UUV 

to search for and detect a hostile contact.   

 

4.2      Particle Filter Implementation 
 

Many recent implementations of target tracking algorithms use particle filters for state 

estimation.  Using techniques similar to those used in other recursive Bayesian estimation 

methods, particle filters attempt to track a target of interest as it evolves over time using noisy 

measurements.  During the search and detection phase of this particular scenario, the 

measurements available to the decision system include:  (1) null measurement (i.e., contact not 

detected at current time), (2) time-dated measurement (i.e., clue found at current time that 

indicates contact was at this location in the past), and (3) bearings measurement (i.e., angular 

measurement towards contact position detected at current time).  This section will discuss how 

the particle filter algorithm will use the three measurement models to estimate the state of the 

contact for the maneuver decision aid algorithms discussed later in this thesis.   

 

4.2.1 Particle Description 

As stated previously, the particle filter state parameters consist of both state variables and 

weight; the variables of interest at time k are represented by a set of M samples (particles).  Each 

particle consists of a copy of the state variables of interest and a weight that defines the 

contribution of this particle to the overall distribution [22].  The remainder of this section will 

discuss how the structure of the state variables and the particle weights were determined and how 

they will be employed in the submarine search and detection scenario.  
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4.2.1.1 Descriptive State Parameters 

In the context of this chapter, the contact’s descriptive state parameters include its 

position and velocity.  A particle state estimate for a contact in this implementation can then be 

represented by: 
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where the position is stored in the Cartesian north and east coordinates ( )i
k

i
k yx ,  in a locally flat 

earth reference frame and the velocity of the contact is defined by its speed in the north and east 

direction.  These parameters were chosen to fulfill the objective of the search.  Specifically, the 

state parameters for position in the north and east direction are necessary to localize the position 

of the contact.  State parameters for speed in the north and east direction provide additional 

information about the behavior of the contact.  Eventually these state parameters will be useful in 

predicting where the contact will move. 

As stated earlier, we assume that as the contact travels through the maritime environment 

it deposits time stamped clues that provide information about the contact’s position at some 

previous point in time.  Based on this information, particles cannot consist of only the contact 

state at the current time.  In order to appropriately describe the search space, the existence of 

clues must be considered when defining the state of each of the particles.  Ultimately, the 

distribution must account for not only the current location of the contact but also the clues it may 

have deposited in the past.   

Because the location of the clues is directly related to the previous positions of the 

contact, the search space will be characterized as arrays of particles.  In other words, instead of 

representing the search space with independent, individual particles, the search space is 

composed of independent particle arrays.  Each array consists of a particle for the current contact 
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state and a history of previous particle states representing each potential clue along the target 

trail (see Figure 4.6).   

 

 

Figure 4.6:  Particle Array Illustration 

 

Depending on the capability of the passive sensor technology, a history of previous 

particle states is kept until the age, n, at which the sensor is no longer capable of detecting the 

presence of clues.  Because the clues remain stationary upon deposit, only the particle 

representing the current state of the possible target will be propagated in the particle filter.  As 

the current state of the contact is propagated, the particle history is updated and stored as shown 

in Table 4.1.   

 

Table 4.1 : Particle Array Structure 
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4.2.1.2 Particle Weights 

The final consideration for the current proposal for the search space distribution is the 

particle weights.  In order to correctly model the search space and provide a path planner with 

accurate information, the particles must be appropriately weighted.  Because the objective of the 

search is to localize the target, the particle weights will collectively describe the probability 

distribution for the location of the contact.  Therefore, each particle array will be assigned only 

one weight which defines the contribution of the current particle state to the overall estimate of 

the true contact state.  Previous particle positions found in the particle history will influence the 

weights of the current particle state based on the relevant probability model.  Depending on the 

location of the UUV with respect to the locations in the particle history, the weight of the current 

contact state will be updated.  Further explanation into updating of probabilistic particle weights 

will be discussed later in Section 4.2.3. 

 

4.2.2 Contact Motion Model 

One of the fundamental decisions for navigation and tracking applications is the motion 

model that describes the contact.  Typical contact motion can be modeled with linear state 

dynamics as seen in equation (3.1), where the contact’s motion follows a linear path except for 

measured inputs, u and unmeasured disturbances, kw  [12].  Similarly, for this particular search 

and detection scenario, the contact motion is assumed constant and linear.  Based on intelligence 

about the assumed contact, the mean traveling speed is known with reasonable certainty.  

Although the distribution of the moving contact speed is known, the path traveled by contact is 

uncertain.  Due to the geographical constraints of the environment and the uncertain objectives 

of the contact, the contact could maneuver on numerous courses.   

Specifically, the geography of the area of interest creates two possible courses on which 

the contact could travel (see Figure 4.7).  As a result of the island existing beyond the sensor 

network, the contact can either move through the channel passage or through the seaway.  

Because the channel passage is much narrower and more difficult to maneuver through, it is 

more likely for the contact to choose the wider sea passage.  For the purposes of state estimation, 

it is assumed that there is a ps percent likelihood that the contact will move through the seaway 
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as opposed to channel passage.  The effect of this likelihood function will be made evident 

through the propagation function of each of the particles, where initially approximately ps 

percent of particles will travel through the seaway and (100 - ps) percent of particles will move 

through the channel. 

 

 

Figure 4.7:  Contact Motion Model for Submarine Search and Detection Scenario 

 

In addition to the uncertainty in the decision of the contact to travel through the seaway 

or channel, the particle filter motion model must also properly model the uncertainty in the 

objective of the contact.  Based on information obtained through other forms of intelligence, we 

assume that contact has three potential goal destinations across the sea (i.e., Goal A, Goal B, 

Goal C).  Upon passing through either the channel or the seaway, the contact will adjust its 

heading towards its objective (see Figure 4.7).  Each of these destinations are assumed equally as 

likely, and as a result, an approximately equal number of particles will head towards Goal A, 

Goal B, and Goal C.   
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4.2.3 Observation Model 

As an autonomous underwater vehicle maneuvers through the maritime environment, its 

sensors collect information that describes the contact’s position relative to the UUV.  Due to the 

clandestine nature of the operations, the decision support system aboard the UUV must explore 

with passive sensor technologies.  Depending on the position of the UUV relative to the contact 

and the contact’s trail, the sensor will be provided with one of the following pieces of 

information:  (1) null measurement (i.e., neither contact or clue detected at current time), (2) 

time-dated position measurement (i.e., clue detected at current time denoting position of contact 

at time k - α), and (3) bearings measurement (i.e., angular measurement towards contact position 

detected at current time).  Therefore, instead of using sensors which provide continuous 

measures, the decision system in this problem must be able to relate each of measurements 

acquired by UUV sensors to estimate the state of the contact.  The remainder of this section will 

explain how to appropriately model each of the measurements and describe how the particle 

filter will use the measurements to estimate the state of the contact. 

 

4.2.3.1 Stage 1:  Null Measurement Model 

The null measurement model refers to the initial stages of the search when the contact is 

positioned outside the range of all available passive sensor technologies.  During this initial stage 

of the search, no sensor measurements will be obtained by the sensor aboard the UUV.  Even 

though no time-dated or bearing measurements were detected at this point, information about the 

position of the contact can be derived.  For instance, the fact that the UUV sensors detected no 

measurements at the current UUV position tells us that there is a high likelihood that the contact 

is not located within the passive sensor detection range.  Therefore, the probability that the 

contact or any of its associated clues exist within the detection region surrounding the UUV is 

very small.  Using that information, the contact position distribution can be adjusted accordingly 

by greatly reducing the probability of detection in the area surrounding the UUV (see Figure 

4.8). 
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Figure 4.8:  Illustration of Null Measurement Model 

 

As previously introduced, the null measurement model refers to the stages of the search 

when no measurements are obtained by the UUV sensor technologies.  Given that the UUV 

receives no measurements at the current UUV position, there is a high probability that the 

contact is not located within the passive sensor detection range.  Due to uncertainties in sensor 

performance and environmental effects, the particle weights within this region cannot be strictly 

set to zero.  Instead the weights of the particles whose current or past positions exist within the 

detection region should be reduced according to the probabilistic models that define the 

measurement model.   

In order to appropriately reduce the weights of the particles affected by the null 

measurement model, we must determine the probability of detecting an equivalent clue with age 

α given that a contact had passed through the detection region α time steps previously.  Based on 

the assumptions of the time-dated measurements, we can use a Bayesian approach to determine 

the required probabilities.  With the understanding that the contact passed through the detection 

region at time k - α, the probability of detecting a trace of the contact’s trail can be found using 

the following expression: 

 

)()()( αααα
kkkk CpCDpDp =     (4.2) 
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where the probability of detecting a clue, )( α
kDp  is equal to the conditional probability of 

detecting a clue given a clue had been deposited, )( αα
kk CDp , multiplied by the probability that a 

clue had been deposited at time k – α, )( α
kCp .  These probabilities can be estimated by applying 

the assumptions about sensor performance and clue deposit frequencies.  The conditional 

probability )( αα
kk CDp  is equivalent to the sensor detection rate introduced earlier, where the 

probability of detecting a clue decreases exponentially with respect to the age of the clue, α.  The 

specific probability can be computed using the following expression: 

 

)()( / S
kk eCDp ααα −= ,     (4.3) 

 

where S is the factor controlling the rate of decrease.  Furthermore, the probability that a clue has 

been deposited at time k – α, )( α
kCp  is equal to the assumed clue deposit probability, f as seen in 

the next expression: 

 

fCp k =)( α .     (4.4) 

  

These expressions can be used to update the weights of the particles that have passed 

through the detection region within the past n time steps.  If the position of particle j or any of 

the past history of particle j falls within the detection region (i.e., 222 )()( dyx i
k

i
k ≤+ −− αα ), the 

particle weight should be reduced according to the time since the particle passed through the 

region.  Depending on the amount of time elapsed, the weight of the particle will be reduced by 

the probability of not detecting a contact or its trail that has traveled through the detection area 

))(1( α
kDp− .  In particular, the weights of the affected particles will be updated according to the 

following expression: 
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For those particles whose current and past positions exist outside the detection region, 

this measurement model provides no relevant information.  As a result, the weights of these 

particles will remain unchanged. 

 

4.2.3.2 Stage 2:  Time-Dated Measurement Model 

The time-dated position measurement model refers to the stage of the search when the 

passive sensor aboard the UUV detects a clue.  At time k, a measurement of the contact produces 

the following time-dated measurement: 
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which consists of the position of a contact at a time k - α in the past.  Although the clue does not 

provide a point estimate of position of contact at time k, it considerably reduces the contact 

position distribution.   

Using the age of the detected clue and the assumed maximum contact speed, we can 

calculate the maximum distance that the contact could have traveled during the time since the 

clue deposit.  This maximum travel distance, E, is obtained through the following equation: 

 

VE α= ,     (4.7) 

 

where α is the age of the detected clue and V is the assumed maximum speed of the contact.  This 

value defines the radius of the area surrounding the clue position in which the contact could 

currently be located.  Because the contact cannot travel beyond this maximum travel distance, we 
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know that contact position distribution can be constrained to positions within this radius 

surrounding the clue (see Figure 4.9). 

 

 

Figure 4.9:  Clue Effect on Contact Position Distribution 

 

After constraining the position distribution with the information gained from the clue 

measurement, the distribution can be constrained further by decreasing the probability of 

locating the contact within the detection region surrounding the UUV.  Based on the logic used 

before in updating the distribution with the null measurement, there is a low probability that the 

contact is located in the detection region, because no additional measurements were discovered 

near the UUV.  After combining the information from the null measurement and the time-dated 

position measurement, the contact distribution is constrained further and the uncertainty in the 

distribution is greatly reduced (see Figure 4.10). 
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Figure 4.10:  Illustration of Time-Dated Position Measurement Model 

 

As introduced earlier, the time-dated position measurement model is applied when the 

passive sensor aboard the UUV detects a clue, which consists of the position of the contact at a 

time k - α in the past.  Based on the position and age of the clue as well as intelligence regarding 

the maximum speed of the contact, the particle distribution can be updated according to the time-

dated measurement model which proposes that the contact could not have traveled beyond the 

maximum travel distance, E.  Consequently, the probability of detecting the contact outside the 

maximum travel distance stretching from the clue position is very low.  Although the probability 

of detection is extremely small outside the maximum travel distance, we cannot assume that the 

particle weights in this outer region will be zero.   

Due to the uncertainty in the position of the detected clue and the uncertainty in the 

traveling velocity of the contact, the circular region surrounding the clue is not strictly defined.  

Specifically, the probability of detection extends beyond the maximum escape distance as a 

result of the uncertainties.  In addition, the probability of detection within the maximum escape 

distance is not uniformly distributed.  Due to the assumed constant linear motion of the contact, 

there is a higher probability of the contact being positioned at the edges of the escape radius, E 

(see Figure 4.11).    
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Figure 4.11:  Contact Position Distribution in the Areas Surrounding the Clue Location Due to the 

Uncertainty in the Clue Location and the Assumed Contact Motion Model 

 

To correctly model the reduction of the particle weights upon the detection of a clue, we 

must consider the resulting position distribution in the areas surrounding the clue location.  

Based on the assumptions of the contact motion and the uncertainty in the age of the clue, we can 

model the probability distributions as a function of the distance from the detected clue location.  

To account for the probability distribution shown in Figure 4.11, the particle weights will be 

updated according to the distance between the particle and detected clue location, i
kd  which can 

be computed with the following expression: 
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Because of the asymmetrical form of the resulting position distribution, the particle weights will 

be updated according to one of two updating strategies.  For particles existing within the escape 

radius E, the particles will be updated according to the following expression: 
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For the remaining particles which lie outside of the radius E, the weights will be updated 

according to the next expression: 
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4.2.3.3 Stage 3:  Bearings-Only Measurement Model 

The bearings-only measurement model refers to the stage of the search when the UUV 

detects a bearings measurement using passive sonar.  A bearings measurement will only be 

returned when the UUV moves within passive sonar detection range.  When this event occurs, 

the following bearings measurement can be processed [5]: 
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where ),( kk yx  is the position of the contact at time k and ),( sksk yx  is the position of the UUV 

platform at time k.  The measurement value, θ, is defined as the angle from East to the line of 

sight between the sensor and the target in the counter-clockwise direction (see Figure 4.12) [5]. 
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Figure 4.12:  Illustrative Example of Bearings Measurements 

 

For the purposes of this thesis, the bearings-only measurement model will not be 

implemented, but only discussed.  Once the UUV maneuvers within the passive sonar range and 

returns a bearing measurement, the search and detection phase of the submarine track and trail 

problem will be completed.  Future work will consist of transferring from the search and 

detection phase to the track and trail phase of the problem.  The track and trail problem will 

consist of following the contact within the passive sonar detection range in order to successfully 

track the contact with bearings measurements.  
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Chapter 5   
 

 

 

Motion Planning for Dynamic Search 

Operations 
 

Due to the nature of moving target search operations, the available information on the 

position of the target is constantly changing.  As the UUV and the contact maneuver through the 

fixed search environment, the contact position distribution maintained by the UUV decision 

support system evolves as a result of the available sensor readings and the dynamics of the 

contact.  Therefore, in order for a UUV to search autonomously within this dynamic 

environment, the decision support system aboard the platform must be able to develop motion 

plans online.  These plans must account for varying distributions of possible target locations as 

well as for obstacles in the environment in order to plan traversable paths that most effectively 

narrow the search area.  This planning process can be complex, because sensor measurements 

acquired at each moment in time are dependent on the location of the sensor with respect to the 

contact position.  For this reason, each potential action will have a different effect on the 

resulting posterior distribution.  Based on the stated difficulties of searching in the midst of 

dynamic information, the remainder of this chapter will describe how to use the available 

information to design an autonomous navigation system for use in UUV search operations. 

 

5.1      Dynamic Decision System Architecture 
 

The search and detection mission offers many challenges to the decision system within an 

autonomous vehicle.  The ability to dynamically plan vehicle paths to track maneuvering 
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contacts and create safe vehicle trajectories in complex water environments is extremely 

important for mission success and overall system survivability.  In order for a functional UUV to 

be aware of its dynamic surroundings and assess the impact of that knowledge on its plans, the 

central autonomous functions within the mission controller aboard the UUV must be integrated 

and tuned for effective real-time operation.  This integration involves elements of planning, 

mapping, and awareness.  To facilitate the analysis of the search and detection mission, this 

thesis will focus solely on UUV motion planning and route control.  By ignoring the functional 

integration within the decision system, we can direct our attention to the improvement of the path 

planning algorithm used to search for a contact.  In particular, the integration of localization, 

mapping, and situational awareness will not be considered.  Instead it is assumed that the UUV 

location and the map of the environment are known with complete certainty throughout the 

scenario.   

Although these simplifying assumptions remove the dynamics and uncertainty from the 

environment, the UUV must handle the complexities and uncertainties that stem from the 

dynamics of the available information about the target.  For instance, as the single sensor 

platform searches for long periods of time, the estimate of the contact location can grow 

increasingly complex without the support of additional autonomous vehicles or detailed 

intelligence on the location of the target.  Due to the endurance requirements and complexity of 

the information available, an effective autonomous search and detection mission will involve 

significant levels of replanning.  In order for the decision system aboard the autonomous vehicle 

to create motion plans and effectively update those plans when necessary, it must operate within 

a dynamic system framework.  The remainder of this section will present an overview of 

dynamic systems before introducing the specific dynamic system architecture used by the 

decision system in this thesis.   

Using Liu and Chen’s definition, a probabilistic dynamic system is a sequence of 

evolving probability distributions )( kk xπ , indexed by discrete time t = 0, 1, 2, …, k.  In the 

search and detection scenario, the system is a probabilistic dynamic system, because the contact 

position distribution, )( kk xπ , changes from time k to k+1 due to the uncertain maneuvers of the 

contact and the incorporation of new data into the decision system [17].  Maintaining and 

updating these dynamic state distributions is critical in making intelligent decisions.  The 
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information contained in these distributions can be manipulated by autonomous decision systems 

to evaluate decisions and execute the plan that results in the most optimal posterior distribution.   

Dynamic systems such as search and detection operations can be modeled by integrating 

the state estimation techniques discussed in Chapter 3.  The state estimation techniques enable 

decision systems to perform real-time analysis on the dynamic systems by updating the estimate 

of the state variables.  As introduced in Chapter 3, our model consists of two parts:  (1) 

observations, kZ  and (2) unobserved states, kx , where the distribution of the unobserved states 

at time k can be approximated according to the following conditional probability: 

 

)()( kkkk Zxpx =π .     (5.1) 

 

Therefore as new information is processed, the chosen filtering process incorporates the 

new information and updates the state estimate.  The UUV planner can use the probabilistic state 

estimate to formulate intelligent motion plans.   

The decision system designed in this thesis generates path plans through two coordinated 

levels of dynamic systems:  a primary control system and the path generation function.  The 

primary dynamic system consists of a feedback control loop.  This control system monitors the 

search environment through on-board sensors and forwards motion plans to the UUV guidance 

navigation and control system to initiate UUV movements.  The information passing through this 

system consists of the contact position distribution.  With the assistance of the sensor 

measurements, the position distribution flowing through the system will be updated and used as a 

means to develop path plans.  This flow of contact state information will be modeled with state 

estimation techniques as discussed in Chapters 3 and 4.  Specifically, for the remainder of the 

thesis, all state estimation carried out during the control process will be accomplished with the 

application of the particle filter as introduced in Chapter 4.   

Using the state information provided by the particle filter, the real-time UUV motion 

planning system will follow the dynamic system architecture as seen in Figure 5.1.   
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Figure 5.1:  High Level UUV Dynamic Decision System 

 

This high-level dynamic decision system provides the path commands to the UUV 

guidance navigation and control system.  Specifically, based on strategic inputs, such as 

geographical, intelligence, and localization information, the state estimation filter is provided 

with an initial contact position distribution.  The state estimation filter will format the 

distribution according to the appropriate state estimation technique.  This initial state information 

as well as the current position of the UUV is received by the path generator.  Upon procuring the 

current state distribution and UUV position, the path generator evaluates the information 

available and returns the best path with respect to the stated search objective.  After generation, 

the planned path is executed and sent to the UUV guidance navigation and control to initiate the 

path.  After completing the path, the UUV monitors its current status by processing a new sensor 

reading and updating the contact position distribution through the state estimation filter.  At this 

point, the feedback control process continues until the contact’s position has been identified.   

In addition to the primary control system architecture seen in Figure 5.1, a secondary 

dynamic system exists within the path generation function.  The path generation function 

evaluates the information it receives through a second dynamic process in order to return the 

path that best meets the search objective.  The dynamic path planner as seen in Figure 5.2 is 

necessary to produce feasible motion plans, because the available information changes during the 
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execution of an action.  In order to manage the dynamic information, the state distribution must 

be resampled and evaluated before generating an additional step in the path. 

 

 

Figure 5.2:  Dynamic Path Generation for UUV Decision System 

 

According to the system design, the path generation function takes the following 

parameters:  current state distribution from the particle filter and the current UUV position from 

an assumed localization function.  Based on the value and characteristics of the inputs, the path 

planner generates a feasible action space.  The action space consists of the feasible maneuvers 

that the UUV considers at the current time.  After generating the action space, the planner 

implements a separate “planning” particle filter to simulate one action from the available action 

space and predict the future distribution.  Upon proposing the future distribution and UUV 

position, the simulated filter will resample the particles in the distribution under the assumptions 

of measurement model 1 (i.e., assume no measurement is observed at the current location in the 
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path).  Depending on the desired path depth, the simulated state distribution and enumerated path 

will either be evaluated (if desired path depth has been reached) or will be returned to the 

beginning of the planning algorithm as inputs for the next level in the path (if desired path depth 

has not been reached).  This recursive path enumeration process will continue until all paths have 

been enumerated and evaluated.  At the conclusion of the enumeration process, the path that 

leads to the most desired posterior distribution (i.e., the best estimate of the contact location) at 

the stated path depth will be forwarded as the optimal motion plan.  Once received by the UUV 

guidance navigation and control, the motion plan will be executed by the vehicle controls. 

The dynamic path planning architecture as depicted above allows the decision system 

aboard the UUV to look farther into the search environment when determining motion plans.  

Without a dynamic process in place, a path planner would either design extended paths that fail 

to consider the changing information or propose limited routes that only consider the adjacent 

information space in hopes that the information would not change significantly during the 

execution of the route.  Neither of these alternatives will provide intelligent motion plans.  To 

improve the motion plans over the duration of the search, the path planner needs to consider as 

much of the available information as possible.  By looking further into the future and considering 

more of the available information, the planner can make better decisions at the current time step.  

In other words, the UUV needs to consider future movements and contact position distributions 

when determining where to move next:  the maneuver that is optimal after one time step may not 

be optimal when determining how the UUV should maneuver to optimize after several time 

steps.  Therefore, the path planner simulates future UUV actions and evaluates what series of 

actions will maximize the search objective. 

  

5.2      Motion Planning Formulation      
 

With the path planning structure established, the following sections seek to describe how 

to employ the functions within the path generator to form effective paths.  While the majority of 

this chapter will describe how to use the particle filter distribution to guide the planning process, 

the motion planning problem must first be formulated.  In particular, this section will define the 

appropriate objective function in which the path generation function seeks to solve as well as the 
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feasible decision space which provides the options with which to evaluate the expressed 

objective function.  

 

5.2.1 Objective Function 

In anti-submarine operations, the initial objective involves detecting the location of a 

moving contact.  The challenge thus becomes designing a mathematical model that locates the 

contact within the adversary vessel’s projected area of operation.  At first thought, it might seem 

appropriate to design a model with an objective function that seeks to maximize the probability 

of detection.  Although this objective may lead to quick detection, it can also potentially lead to 

distributions with greater uncertainty when detection is not made early in the search.  Therefore 

if the UUV is expected to conduct extensive searches, the objective function should instead be 

designed in a way that produces more accurate estimates of the contact’s location.  An objective 

function that minimizes the uncertainty in the location of the contact achieves more accurate 

estimates by containing the distribution.  In other words, the UUV should travel along the path 

that “shrinks” the search area by condensing the possible locations in which the contact could be 

positioned. 

Based on that logic, we must determine a mathematical model that results in a reduction 

in the uncertainty in the location of the contact.  In order to obtain these results, we must be able 

to quantify uncertainty.  A common method to accomplish this in information theory is to 

determine the belief state’s entropy.  Assuming we know the probability distribution of state s of 

a system, entropy can be expressed as [13]:   

 

∑
∈

−=
Ss

sPsPPH )(log)()( .    (5.2) 

 

The complement of entropy is referred to as information.  While statistical entropy is a 

probabilistic measure of uncertainty, information is a measure of a reduction in that uncertainty.  

If information about the state of the system is obtained through observations, these observations 
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will reduce our uncertainty about the system's state by excluding, or reducing the probability of a 

number of states.  Therefore, the information, I received from an observation is equal to the 

degree to which uncertainty is reduced [13]:   

 

1−−= kk HHI  .    (5.3) 

 

Based on this reasoning, the objective function for this search and detection problem is 

formulated as the process of evaluating different sensing actions that the UUV can take and 

choosing the action, ku , at time k that maximizes the information acquired by the UUV.  The 

action that maximizes the information can be expressed as [17]: 

 

1max += kuk Iu      (5.4) 

 

By maximizing the information gain, the UUV executes actions that reduce the 

uncertainty in the location of the contact.  The challenge in implementing this concept in practice 

is to develop a methodology for quantifying the expected information for different sensing 

actions and evaluating them in a computationally feasible manner given limited a priori 

information [17].   

For extended Kalman filter applications, the expected information is contained in the 

estimate error covariance matrix, P.  Specifically, under the assumptions discussed in detail in 

[17], the inverse of the error covariance P will be an estimate for the Fisher information of the 

system, which is [17] 

1−≈ PI . 

Because the particle filters do not maintain an estimate of the estimate error covariance, 

this thesis must use the particle filter distribution to estimate the uncertainty for each state 

variable.  With that said, the estimate for the covariance matrix at each time step can be 

expressed as: 
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where the variances are estimated with the N particle filter samples according to the equation for 

sample variance: 
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At this point, the information is in the form of a matrix.  Unfortunately, for the evaluation 

purposes, we require a metric to quantify the information.  Therefore, we will implement the 

metric, C(P) defined by Feder, Leonard, and Smith, which gives the total area of the error ellipse 

and thus is a measure of the confidence in the location of the contact [17]:   

 

)det()( PPC π= .     (5.7) 

 

Using the variance estimates and formation of this cost metric, the specific objective 

function can be formulated and evaluated.  In particular, the objective of the path generation 

function is to produce a set of actions ku  that minimizes the area of the error ellipse as seen in 

the following objective function [17]: 

 

)det(min)(min PPC π= .    (5.8) 
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5.2.2 Decision Space 

The second part of the dynamic motion planning formulation involves the selection of the 

decision space.  For the path generation function, the decision space contains all the available 

paths from which to evaluate the objective function in (5.8).  For the remainder of this chapter, 

the decision space will be referred to as: 
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where each R  represents a potential path that is made up of a set of d  action inputs A .  The 

number of action inputs comprising each path is dependent on the desired path depth d  which 

will be consistent for all paths.  The number of available paths m  to be evaluated is restricted by 

the number of possible actions for each input, A .  In general, each of the potential actions within 

a path can be defined as: 
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where θ  is the UUV heading and t  is the time duration of that heading command [19].  The 

generation of these actions depends on the search strategy being implemented.  Due to 

environmental constraints, the UUV may need to avoid obstacles and as a result additional 

maneuvering may need to take place along each action sequence.  Further discussion into UUV 

obstacle avoidance as well as the specifics of action generation functions will be introduced in 

the next section.   
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5.3      Motion Planning Strategy 
 

With the objective function formulated, this section focuses on the applied motion 

planning strategy.  When evaluating decisions, it is necessary to understand that different inputs 

can lead to more accurate estimates of the state parameters.  Therefore, we must attempt to 

optimize the input in a manner that leads to the best possible estimates.  This section will explain 

the details of the action generation function by describing the most advantageous choice of 

inputs, the simulation of those inputs, and the evaluation of each of the generated inputs.   

 

5.3.1 Action Space Generation 

One of the most important decisions for the UUV decision system during the motion 

planning process involves the action space selection.  Due to the computational complexity 

involved in simulating future actions, the search depth is limited because the size of the action 

space grows exponentially with each additional unit of depth.  Therefore, it would be beneficial 

to prune actions within the path generation tree that lead to little information gain in order for the 

path depth to be expanded further into information rich sections.  Unfortunately, in many 

previous applications, the action space has been generated using discrete sets of actions.  Often 

times this action space generation leads to searches into areas with no information to be gained.  

In response, we propose a cluster-based action space generation function that examines the 

complex search space for available information when defining feasible actions.  In the remainder 

of this section, we present these two action space generation strategies:  the discrete action space 

and the cluster-based action space.  We will attempt to show how the proposed cluster-based 

action space generates deeper paths by taking advantage of the information available and 

ignoring actions with no information to be gained.  

 

5.3.1.1 Discrete Action Space 

In many current applications of adaptive motion planning, the available actions originate 

from a fixed, discrete set.  The action set is often constrained in the degrees of freedom allowed.  
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For example, during a path planning process, an autonomous vehicle could be limited to a 

discrete number of heading directions, as seen in the following general expression: 
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According to this discrete action space generation, the number of actions generated is 

equal to the maximum allowable heading directions.  Each of these actions will be executed for t 

time units before re-clustering the data and adding another unit of depth to the current path.   

 

5.3.1.2 Cluster-Based Action Space 

Due to the structure of the discrete action generation, a great deal of computation could 

potentially be spent evaluating areas containing no information.  The action space generation 

function could make more efficient use of available computation power, if branches into areas of 

no information gain could be removed from the search tree.  The following section will present 

an alternative action space generation function that proposes a method for considering only the 

actions that lead to information gain.  The alternative action space constrains the actions by 

clustering the points of potential information gain and only planning paths towards those clusters 

of information.  This section will detail the cluster-based action space by explaining how the 

clusters are created, selected, and used for the purposes of path planning. 

Clustering is a division of data into groups of similar objects.  For the purposes of the 

path generation function, we seek to group points of information gain together according to 

location (i.e., x-y coordinates).  Due to the sample-based structure of the particle filter, geometric 

clustering algorithms can be applied to the positions of the samples comprising the particle filter 

distribution.  In Figure 5.3, the clustering algorithm used to cluster the particles within the 

sample distribution can be referenced [3].   
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Clustering Algorithm
Input:  Particle positions ),( i
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kx  where }...1{ Mi∈  at time k 
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Steps: 
1. Initialize all assignment values to one, wi = 1.0 
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b. If more than one particle associated with the current particle i 
If 1>mtmp  

Increment the number of clusters 
K = K + 1 
 
Find the centers of gravity of the associated data points 
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Save the number of associated points within the cluster 
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End 
End 

 

Figure 5.3:  Clustering Algorithm 

 

This clustering algorithm compares the relative distances between particles and partitions 

the particles according to a cluster size parameter, Tdist.  Therefore, as the state distribution 
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becomes dispersed and multi-modal, a clustering algorithm can divide the particles into 

distinctive sets which identify the regions with high probabilities of detection.  Each of these K 

subsets, referred to as clusters { }KiC ,...,1∈ , will be represented by a centroid, (i.e., the mean of the 

particles assigned to the cluster) [19]: 
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These cluster centroids represent the centers of mass within the particle distribution as 

illustrated in Figure 5.4.  This visual representation of the clustered particle distribution 

demonstrates how the particles are partitioned according to relative distance.  For a more detailed 

explanation of clustering algorithms reference Berkhin [3].   

 

 

Figure 5.4:  Illustration of Clustered Particle Filter Distribution 

 

After the cluster algorithm is implemented, the computed centroids serve as the catalyst 

for the action generation function.  These centroids establish goal locations for the autonomous 

vehicle to head towards.  Thus, the generated actions are a function of the current UUV position 

and velocity as well as the position of the cluster centroids, as seen in the following expression: 
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In this expression, we find that the number of actions generated is dependent on the 

number of clusters.  For each action, the heading input is the angular measurement from the 

current UUV position to the selected cluster centroid.  In addition, unlike the discrete action 

generation, the durations of the actions are not uniform.  Instead the cluster-based action set 

contains inputs with different durations depending on the distance to the given cluster centroid 

and the speed of the UUV. 

 

5.3.2 Monte Carlo Simulation of Search Environment 

After the formation of actions, the next step in the motion planning algorithm is to 

evaluate the action space according to the objective function in (5.8).  Due to the complexity of 

the system, no closed form solution exists to solve the mathematical program.  Without a general 

formula to solve the system, the system needs to be simulated in order to estimate the effect of 

the action space on the state distribution.  In the same way that the particle filter is used for the 

UUV controls, a particle filter simulation can be used for the purposes of planning.  With the 

prior real-time distribution, the contact motion model, and measurement models, Monte Carlo 

simulations can be applied to the samples to obtain a simulated posterior distribution which can 

then be used to evaluate the objective function.  To demonstrate how a particle filter can be used 

for path planning, the remainder of this section will detail the three main components of the 

simulation:  the action execution, the sample propagation, and the measurement update. 

 

5.3.2.1 Action Simulation 

The first part of the planning simulation involves executing the generated actions.  Each 

of the UUV actions must be simulated in order to determine the potential effectiveness of the 



84 

movement.  While the control inputs within the action space consist of headings and movement 

durations, these actions may require modifications prior to their actual execution.  Due to 

limitations in computation capabilities, constraints within the search environment, or dynamics 

of changing information, these initial action inputs change prior to execution.  Specifically, the 

action space can change in one of the following ways:  limiting the number of available actions, 

re-routing to avoid obstacles, or constraining the duration of the action to account for evolving 

information. 

 

5.3.2.1.1 Cluster Selection 

One of the constraining factors that must be addressed prior to action execution involves 

the available computation time.  The process of simulating UUV movements and state estimation 

filters can be very computationally expensive.  As the action space grows in size, the number of 

necessary simulations increases.  In an effort to reduce the computational workload and number 

of simulations, limitations may be placed on the size of the action space.  For discrete action 

space generation, the size of the action space can be easily reduced by constraining the degrees 

of freedom.  Conversely, a cluster-based action space cannot be as easily reduced.  Because the 

actions are not uniform in duration or angular spacing, greater thought must be put into which 

actions should be considered. 

Although we cannot truly evaluate the effect of each action without actually simulating 

each of them, we must determine a way to constrain the action space in a way that minimizes the 

possibility of overlooking sections of available information.  The constraining algorithm 

identifies a smaller set of clusters that covers the available information in a way that limits 

redundancy of actions.  The redundancy of actions can be limited by spatially constraining the 

clusters used to create the action space.  Basically, the algorithm seeks to remove any clusters 

that produce similar action headings and travel durations.  This process is accomplished using 

the following algorithm (see Figure 5.5):  
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Cluster Constraint Algorithm
Input:  Cluster centroids 
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b. Add the closest cluster to the valid cluster list 

 
 push validCluster, c  using minClusterIndex  

 
c. Find the clusters within the minimum distance radius of the closest cluster 
      
 For all }...1{ Ki∈ , 

If Dist minCluster
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Add cluster to the invalid cluster list 
push invalidCluster, c  using i 
 
End 

 End 
 
d. Remove all invalid clusters from the consideration list 

For all { }sterinvalidClu∈j , 

 pull considerList, c  using j  

 End 
END 

 

Figure 5.5:  Constraining Action Space Algorithm 

 

This algorithm constrains the action space by considering only one cluster in the general 

vicinity.  This is accomplished by selecting the closest cluster and then disregarding all 
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remaining clusters that exist within a radius surrounding the cluster, where the radius is equal to 

the distance between the selected cluster and the UUV position.  This process is continually 

repeated for the remaining clusters until all clusters have been eliminated from consideration or 

selected for use in generating the action space.  An example of the process of constraining the 

action space is illustrated in Figure 5.6 seen below. 

 

 

Figure 5.6:  Illustrative Example of Constraining Action Space Algorithm 

 

5.3.2.1.2 Obstacle Avoidance 

In order to steer clear of any environmental obstructions or boundaries, the motion plans 

must provide obstacle avoidance.  As the actions are currently stated, each movement consists of 

constant linear motion over the established duration time.  In reality, search environments 

possess obstacles and boundaries which will cause collisions if proper modifications are not 

made to the initial actions.  In the following paragraphs, we will explain how to segment the 

original actions to facilitate maneuvers around any obstacles.  Specifically, the algorithm will 
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find the shortest unobstructed path to the intended destination (i.e., the location of the cluster 

centroid). 

At this tactical point in the motion planning process, we are concerned with the problem 

of moving the UUV from its current position to the goal destination which has been established 

during the strategic development of the initial action space.  Based on this problem statement, 

this sub-problem takes the form of a traditional static motion planning problem.  Assuming that 

the map of the search environment is known with complete certainty, the problem is to find the 

shortest path from the current position to the goal destination while avoiding all impassable 

terrain.  Extensive research has been carried out within this problem area and is better known as 

shortest path algorithms.  While several approaches exist, this motion planner will implement a 

numerical potential field method in an attempt to limit the amount of computational effort 

required during the tactical action execution. 

 The use of potential functions for obstacle avoidance works by constructing a function 

called the potential that has a minimum at the goal destination and a high value at obstacle 

locations [1].  Everywhere throughout the search space, the function slopes down toward the goal 

configuration so that the UUV can reach the goal configuration from any other position on the 

map by following the negative gradient of the potential [1].  For the action execution function, 

the potential field can be achieved by dividing the map into discrete cells which represent the 

potential positions for a maneuvering UUV, as shown in Figure 5.7.    
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Figure 5.7:  Discrete Cell Description of Search Environment 

 

By discretizing the search area, the UUV motion can be restricted to the positions of the 

discrete cells.  Depending on the degrees of freedom allowed, the potential function can be 

formed by computing the distance covered by the discrete steps taken from the current UUV 

position to the goal state and by giving discrete cells over obstacle positions an arbitrarily large 

number, M.  The specific algorithm for the numerical potential field generation can be seen in 

Figure 5.8 [27].  This algorithm demonstrates how a numerical potential field can be created over 

a discrete grid.   
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Numerical Potential Field Algorithm
Input:   N discrete cell locations, ix  where }...1{ Ni∈  
 Goal cell location, gx  
 Potential field function, U 
 Distance matrix, ijD  where }...1{ Ni∈  and }{ iofneighborsj∈  
 

1. Initialize the value function of the numerical potential field 
 

For all passable cells 
( ) 1−=ixU  

For all impassable cells 
( ) MxU i =  

For the goal cell 
( ) 0=gxU  

 
2. Initialize priority queue, Q by adding the goal cell.  Where Q is a priority queue 

sorted by the potential field function 
 

0using, gxQpush  
 
3. Update numerical potential field by adding the grid cell with the lowest potential 

function value from the priority queue 
 

while Q is not empty 
 

Remove cell with the minimum potential function value from the priority 
queue 

  
Qxi min=  

 
 For all neighbors jx  of ix  
   

if ( ) 1−=jxU  

   Update the potential function values of the neighboring cells 
( ) ( ) ijij DxUxU +=  

   
   Add the neighboring cells to the priority queue 
   ( )jxUjxQpush using,  

   end 
  end 

 end 
 

Figure 5.8:  Numerical Potential Field Algorithm 

 

An application of this algorithm to the grid map seen in Figure 5.7 produces the potential 

field in Figure 5.9.  This depiction of the numerical potential field represents the scenario map 

where each cell is connected to its eight neighbors.  The distance needed to travel laterally in any 
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direction is equal to 1 and the distance needed to travel diagonally in any direction is equal to √2.  

Based on these travel distances, the numerical potential field value, U, within each of the cells 

represents the distance needed to travel from the given cell to the goal cell. 

 

 

Figure 5.9:  Numerical Potential Field for Search Environment 

 

Using this numerical potential field, the shortest path from any grid cell on the map to the 

goal cell can be found by moving to the neighboring grid cell with a lower value.  For example, 

in Figure 5.10 cell number 42 (see Figure 5.7) has a value of 9.071, and therefore must travel 

through 9.071 units prior to reaching the goal cell.   
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Figure 5.10:  Numerical Potential Field for Computation of Shortest Path 

 

In this example, the shortest path is formed by considering the values of the neighboring 

cells and moving in the direction of the smallest value as seen in Figure 5.10.  Due to the 

structure of the numerical potential field, this negative descent guarantees a shortest path to the 

destination.  In addition, due to the arbitrarily large values in the cells containing obstacles or 

boundaries, we are assured that no path will cross impassable regions. 

Because the numerical potential field provides the shortest collision-free path from any 

point in the search environment to a specified goal position, it can be applied to the action 

execution function.  In essence, the action generation function creates a list of goal destinations, 

and the numerical potential field ensures that the UUV travels on the shortest path to that goal 

while avoiding any obstacles in the area.  With these modifications to the original actions, the 

action space must be expressed in a different way.  Instead of consisting of strictly a heading and 

a duration, the actions will be segmented to account for the discrete movements towards the goal 

destination.  The discrete actions will form a path that will be expressed as: 
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[ ]GaaaA L21= ,    (5.14) 

 

where the number of discrete actions in the action set A is equal to the total number of grid cells 

in the path, G. 

Even though now all motion is restricted to the available actions, the cluster-based action 

space is still much different than a discrete action generator.  Because the cluster-based generator 

looks further into the search space to identify collections of information, it will require less 

computational effort than a discrete action generator to plan the same path.  A discrete action 

generator has a high computational burden, because it considers all actions.  Conversely, the use 

of clusters eliminates many unnecessary paths and considers only the shortest paths to the 

available information.    

 

5.3.2.1.3 Branching Strategy 

To account for the dynamic information within the search environment, the action 

sequences must be modified further before simulating an action.  As the simulated actions are 

currently stated, the UUV will travel the entire length of the path prior to re-examining the 

available information.  At the conclusion of the movement, the UUV will be located in the area 

in which a cluster of information existed when the action sequence was generated.  Depending 

on the time to travel to the goal destination, the information could have changed significantly.  

Because the contact is moving according to an assumed speed and motion model, we must 

account for the evolving contact position distribution.  Therefore the length of the current action 

set must be restricted, because the full action duration cannot be simulated without possibly 

missing information that evolves over time.   

Even though an adaptive motion planning simulation is certain to miss pieces of 

information during a prolonged motion plan, it is necessary to consider as much information as 

possible to achieve a reasonable plan.  Consequently, the duration of the current actions must be 

constrained to allow for a reevaluation of the search space.  In other words, only a portion of the 

action sequence will be simulated before stopping to recluster the updated particle distribution 
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and establishing new actions based on the updated cluster locations.  This reevaluation allows the 

simulated actions to keep pace with the changing contact position distribution. 

Based on this reasoning, the final question remaining is when to reassess the 

environment.  This reassessment point is a function of the shortest path distance to the selected 

cluster centroid and the relative speed of the UUV in relation to contact.  In general, smaller 

durations lead to better results while longer durations without reevaluation increase the 

opportunity to miss information.  On the other hand, frequent reassessment increases the 

computational burden on the motion planning system.  As a result, a constraint must be designed 

that balances these two effects by producing an intermediate action that limits the amount of 

missed information.  The proposed heuristic limits the length of the simulated action by the 

following ratio of the shortest path distance ⎟
⎠
⎞

⎜
⎝
⎛ −

v
11 , where v  equals the relative speed of the 

UUV in relation to the contact.  For this problem, it is assumed that the relative speed must be 

greater than 1.  Because the information changes with respect to the assumed dynamics of the 

contact, the ratio is a function of the relative speed.  It ensures that a UUV with a higher speed 

than the contact will travel further into the initial action set before reevaluating the search space, 

while a lower relative speed causes reevaluation to take place earlier in the action set.  With that 

said, the further restricted action set can be expression as the following: 
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where the number of discrete actions is the original number of discrete actions G reduced by 

⎟
⎠
⎞

⎜
⎝
⎛ −

v
11 . 
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5.3.2.2 Particle Propagation 

Upon executing the UUV action, the next step in the simulation is to propagate the 

particles within the simulated filter.  The simulated particle distribution provides the foundation 

for all planning decisions and therefore must mimic the real-time particle filter used for the UUV 

controls.  Although the simulated filter will be handled in the same manner as the real-time 

particle filter, the propagation step differs in the durations of the particle propagations.  While 

the particle filter used for controlling the UUV moves particles forward according to set time 

increments, the duration of the simulated propagation step is dependent on the duration of the 

current action.  The simulated propagation step can therefore be expressed as: 
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During the simulated propagation step, if any particle completes the passage through the 

channel or seaway then it will adjust its heading towards one of three objective destinations 

across the sea (i.e., Goal A, Goal B, Goal C).  As explained in Chapter 4, each of these 

destinations are assumed equally as likely, and therefore, an equal number of particles will head 

towards each of the three destinations. 

 

5.3.2.3 Measurement Update 

The final step in the simulation is to update the distribution based on the proposed UUV 

location after the action execution.  At this new position, the particles are resampled according to 

a previously stated measurement model.  Specifically, during the simulation, it is assumed that a 

null measurement is obtained at each simulated step.  In comparing the predefined measurement 

models, the null measurement model provides the least amount of information.  Therefore, after 

each simulated action and particle propagation, Measurement Model 1 is implemented and the 

particles are resampled accordingly.  The simulated measurement model will decrease the 
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weights of the simulated particles within the detection region as shown in Chapter 3.  By 

assuming a null measurement after each action, the plans are generated under the worst-case 

scenario (i.e., least amount of information gained).  Any other measurement such as a clue 

deposit that is found during the course of the action can help to further reduce the uncertainty of 

the distribution.  

 

5.3.3 Path Enumeration 

Following the simulation of the filter and the UUV action, the motion planning algorithm 

continues by adding another step in the path.  After evaluating the updated particle filter 

distribution, the path planner creates a new set of actions based on the simulated distribution.  At 

these reevaluation points, the simulated distribution is reclustered and a new branch is inserted in 

the path enumeration tree to account for the latest action space generation.  These reevaluation 

points can be seen at the branches of the search tree as depicted in Figure 5.11 below. 

 

 

Figure 5.11:  Path Enumeration Illustration 
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Using this search tree structure, the m feasible paths can be produced from the initial 

UUV position.  Based on the tree structure, each additional depth in the path leads to an 

exponential expansion of the number of potential paths.  Although longer paths increase the 

coverage of the search space, they also exponentially expand the number of paths to evaluate.  

Therefore, the two biggest questions in developing these paths are how deep should the paths 

search and how should the paths be enumerated?  The remainder of this section will cover both 

of these topics and attempt to provide a solution strategy that produces effective paths that can be 

solved in a computationally feasible manner. 

 

5.3.3.1 Path Depth Selection 

The first question to be considered is how deep should the paths search?  Depending on 

the stated path depth d, the path generation function will produce paths with d reevaluation 

points.  Therefore for larger values of d, the paths will search farther into the search space by 

reassessing the environment numerous times during the enumeration process.  After simulating 

the path and reassessing the simulated distribution d times, the search objective will be evaluated 

using the posterior simulated distribution.  In other words, the path depth also determines when 

the objective function will be evaluated.  Because information is gained in the search problem by 

covering areas of the contact position distribution, paths with greater depths that cover more of 

the search area will provide the most information to the decision system.  Deeper paths provide 

better motion plans, because they consider a greater section of the search area when evaluating 

the impact of the path.  When paths used for motion planning are relatively short, they only 

consider the local search space and as a result could overlook a more distant, better solution. 

Generating paths with larger path depths does not come without a cost.  Although it is 

advantageous to look deeper into the search area when evaluating the impact of an action, it also 

creates additional computation.  Computation time is typically exponential in the depth of the 

paths under consideration.  For this specific search application, a great deal of computational 

effort is required each time a particle filter is simulated.  During the path enumeration process, 

the particle filter must be simulated at a minimum at each reevaluation point (see Figure 5.11).  



97 

Due to the complexity of the simulations, the path generation function cannot return paths with 

sizeable path depths.  The exact number of simulations that must be processed is dependent on 

the path enumeration method used.  After introducing this remaining factor in computation 

times, a comparison of attainable path depths can be seen in the computation table in the next 

section. 

 

5.3.3.2 Enumeration Methods 

Planning operations require searching through all the possible routes to find the most 

optimal, or efficient route among all the possibilities.  As mentioned in the earlier sections, the 

path generation application must simulate the movements and environment of a UUV to a given 

search depth.   In order for the planner to evaluate the effectiveness of the available paths, it must 

simulate each path and assess the posterior contact position distribution created by each set of 

actions.  The efficiency of these simulation processes is directly tied to the number of steps in the 

simulation required to evaluate the paths.  The number of simulations varies depending on the 

number of actions in each action set, A and the depth of the paths, d.  If the number of actions in 

the action set were equivalent at each branch point, enumerating the paths iteratively would 

require ddA  simulations of particles.  On the other hand, a recursive search algorithm would 

only require ∑
=

d

i

iA
1

 simulations.  In order to avoid strict enumeration, this process of 

enumerating paths is accomplished with conventional recursive search algorithms.  The search 

algorithms will produce a tree structure consisting of nodes placed at choice points and edges 

connecting each node in the graph.  A choice point is anywhere in the graph where a decision 

must be made as to where to go next and the edges represent the actions taken to arrive at the 

next choice point [11].  In Figure 5.11 above, the initial point represents the initial location of the 

UUV and the remaining decision points (i.e., reevaluation points) suggest potential future 

locations of the UUV.  The search begins at the point placed at the initial location, and ends 

when a specified search depth has been reached (i.e., a given number of choice points have been 

reached).  The remainder of this section will cover two algorithms used to search through a tree 

structure and discuss which algorithm was chosen to complete the path enumeration for this 

scenario. 



98 

 

5.3.3.2.1 Breadth-First Search 

One possible search strategy that could be implemented is the breadth-first search [11].  

This strategy begins with the source node and expands every one of its neighboring nodes before 

spreading out to their respective successors (see Figure 5.12).  In other words, it generates all the 

actions at the current search depth before looking any further into a path.  Because each action 

creates a unique posterior distribution and all the nodes at the current depth are expanded before 

an additional unit of depth is added, one obvious problem to this approach is the memory 

requirements for large search spaces [21].  Due to the dynamics of the available information, the 

posterior distributions differ at each of the decision points.  In order to simulate from the correct 

distributions, each path must store its current distribution.  As the path depth grows, the number 

of paths expands exponentially.  With each additional unit of depth, the memory requirements 

for the path generation function will increase significantly.   

 

 

Figure 5.12:  Breadth-First Path Enumeration Illustration 
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5.3.3.2.2 Depth-First Search 

Another search strategy is the depth-first search.  This search algorithm is the 

complement to the breadth-first search, because it visits all of a node's descendants prior to any 

of its siblings rather than visiting all siblings before any children [11].  Therefore, this particular 

method will enumerate an entire path to the specified search depth before it goes back and 

expands nodes at shallower levels (see Figure 5.13).  This particular enumeration method 

reduces the memory requirements needed by a breadth-first search, because only a single path 

from source to destination is stored—at most d posterior distributions will need to be stored 

during the enumeration process (i.e., one posterior distribution for each depth in the search).  

Based on this method’s ability to reduce the required computation and memory necessary to 

enumerate the paths, the path generation function will enumerate path simulations using this 

recursive depth-first search.     

 

 

Figure 5.13:  Depth-First Path Enumeration Illustration 
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5.4      Path Evaluation 
 

After the decision space has been finalized, each of the enumerated paths must be 

evaluated to determine the “best” motion plan.  The “best” motion plan for this problem is the set 

of actions that leads to the posterior distribution that optimizes the objective function expressed 

in (5.8).  Once a path has been simulated out to the stated depth, the objective function value 

must be computed from the posterior distribution.  Because the simulated distribution consists of 

samples (i.e., particles), the evaluation of the distribution will begin by determining the sample 

covariance based on the state parameters of the particle samples.  Using this sample covariance, 

the rest of the objective function can be computed by taking the determinant of the covariance 

and multiplying by π.  This calculation provides the total area of the error ellipse and thus is a 

measure of the confidence in the location of the contact.   

Following the evaluation of all the enumerated paths, the path that leads to the minimum 

cost function value will be chosen as the optimal motion plan.  Based on the structure of the 

objective function, this path plan should lead to a reduction in the uncertainty in the location of 

the contact.  After dynamically executing several maneuvers, the posterior distribution should 

begin to shrink and provide a more accurate estimate of the actual location of the contact.   
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Chapter 6   
 

 

 

Search and Detection Simulation Results and 

Analysis 
 

This chapter will present the results and analysis of the motion planning algorithm 

introduced in Chapter 5.  This chapter will begin by discussing the implemented computer 

simulation and the selected parameters used to test the algorithm performance.  The next section 

of the chapter will illustrate the usefulness of the motion planning algorithm by first introducing 

a simplified search algorithm and then showing the benefits of the improvements until the 

complete motion planning algorithm described in Chapter 5 is tested.  The results of several 

simulations will be shown to illustrate the effectiveness of the dynamic action spaces in motion 

planning. 

 

6.1 General Simulation Design Process 
 

The objective of this section is to introduce the simulation used to compare the 

effectiveness of search algorithms.  The first part of this section will discuss the computer 

simulation designed for the purposes of this research.  It will document the software used to 

produce the results found throughout the remainder of the chapter.  The next part of this section 

reviews the search and detection scenario presented in Chapter 2 and introduces the parameters 

of the scenario that will be of interest during the testing of the search algorithms.    
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6.1.1 Computer Simulation 

The scenario introduced in Chapter 2 was implemented in Matlab® and used to track a 

target with the measurement models discussed in Chapters 3 and 4.  The implementation of the 

particle filter in Matlab® maintains a sample-based distribution of the contact position.  The 

software used to maintain and update the particle filter distribution was based on a modified 

version of ReBEL software.  ReBEL is a Matlab® toolkit of functions and scripts, designed to 

facilitate sequential Bayesian estimation in general state space models.  The code is developed 

and maintained by Rudolph van der Merwe at the OGI School of Science & Engineering at 

Oregon Health & Science University [24].  The original ReBEL software package was modified 

to handle the unique measurement models discussed in Chapter 4.   

With the particle filter software providing the information on the contact position 

distribution, I implemented the motion planning algorithm designed in Chapter 5 in additional 

Matlab® software.  This motion planning software uses the sample-based particle filter 

distribution to be used in conjunction with the modeled scenario and measurements.  The 

software simulates the particle distributions and allows the on-board sensor to look at the 

probability distribution several steps into the future.  The executed motion plans are the motion 

plans that lead to the optimal posterior distribution.   

 

6.1.2 Simulation Scenarios 

This section offers a brief description of each of the scenarios analyzed in this chapter.  

These simulations produce different events that may occur during a search and detection mission.  

The chosen scenarios seek to create situations that identify the strengths and weaknesses within 

the search algorithms examined throughout the rest of this chapter. 

With the scenario described in Chapter 2 serving as the backdrop, the following events 

will be tested:   

Scenario 1: Contact chooses the seaway route to sea.  According to the assumed 

probabilistic motion model, the contact would choose this route with a 

probability of 75%. 
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Scenario 2:   Contact chooses channel route to sea.  This is the route with only a 25% 

probability according to the assumed probabilistic motion model. 

 

Each version of the proposed search algorithms will be simulated twenty times for each 

of the scenarios described above.  At the conclusion of these simulations, the performance of the 

search algorithms will be evaluated using the following metrics:  average time until detection, 

total number of detections, and average final variance in the position distribution (for runs with 

no detection prior to the fixed run time).   

 

6.1.3 Simulation Design Factors 

Prior to carrying out the simulations, design factors must be identified and assigned 

values.  For this particular scenario, the main design factors that could affect the performance of 

any search algorithm include:  the relative speed of the UUV in relation to the contact, the 

detection radius of the sensor aboard the UUV (i.e., the maximum range at which a clue can be 

detected), and the maximum detectable clue age.  Unless otherwise stated later in this chapter, 

the design factors will be assigned these baseline values: 

 

Table 6.1:  Baseline Design Factor Values 

 

 

By adjusting these factors up or down, this section seeks to determine the effect on search 

algorithms.  While these factors can be set at a level in which many algorithms can be proven 

successful, we aim to show that the algorithm presented in Chapter 5 can maintain high levels of 

performance as these parameters are lowered.      

After showing the advantages of the dynamic path generation function, we will introduce 

additional design factors that can be used to improve the performance of the motion plans 
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described in Chapter 5.  Specifically, we will test the algorithm to see how the following 

planning parameters within the algorithm affect the performance of UUV decision system:  path 

depth, replanning point, and sampling frequency.  Initially these parameters will be set at the 

following policy: 

 

Table 6.2:  Initial Motion Planning Parameters 

 

 

6.2 Search Algorithm Performance Comparisons 
 

The final part of this chapter will compare the performances of different search 

algorithms.  Using the computer simulations described in the previous section, this section 

illustrates the differences in available algorithms and demonstrates how the motion planning 

search algorithm seen in Chapter 5 outperforms more conventional search algorithms.  

Throughout this section the results are designed to answer the question of how well the algorithm 

does in meeting the search objective (i.e., finding the contact).  The answer to this question will 

be presented through the results of specific cases.  These examples illustrate situations or 

circumstances in which the search algorithm developed in this thesis executes a more logical 

search strategy.   

The results in this section will start by illustrating the difficulties experienced by a 

simplified search algorithm.  Elements of complexity will be continually added to this baseline 

algorithm until the complete dynamic action space path planning search algorithm is tested.  The 

section will conclude by introducing the existence of time-dated measurements and analyzing 

their effect on the search algorithm performance.   
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6.2.1 Base Case Search Algorithm Analysis 

The first analysis performed in this chapter will focus on the search objective of the 

motion planning algorithm.  The initial search algorithm presented will serve as the base case for 

comparisons.  This algorithm seeks to recreate the intuition of how to search for a missing 

contact.  After witnessing the shortcomings of this algorithm in practice, the remainder of this 

section will discuss an alternative objective that challenges the initial intuition and the basic 

search structure and leads to more favorable results. 

 

6.2.1.1 Base Case Search Algorithm 

When first faced with the problem of searching an unidentified contact, the initial 

intuition of where to search is likely to direct the search vehicle in the direction of the highest 

probability.  Following this intuition, the decision system aboard the UUV would need to use a 

method for determining the direction with the highest probability of detection.  This could be 

accomplished by heading toward the discrete cell with the greatest probability mass (i.e., cell 

with the highest weighted sum of particles) or heading towards the weighted mean of the contact 

position distribution.  For the purposes of this thesis, this search objective will be achieved by 

separating the search area into eight sectors around the UUV position (see Figure 6.1).   

 

 

Figure 6.1:  Sector-Based Action Space 
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With this sector-based action space in place, the decision system chooses the action that 

corresponds to the sector with the maximum amount of particles.  Based on this strategy the 

UUV will move towards the sector with the greatest probability at each step throughout the 

entire simulation.   

   

6.2.1.2 Base Case Performance Evaluation 

This section reports on the performance of the base case search algorithm in the scenarios 

mentioned previously.     

 

6.2.1.2.1 Scenario 1 Analysis   

When the contact chooses the route to sea with the highest probability, the sector-based 

search performs relatively well.  Because the algorithm directs the UUV in the direction of the 

highest probability mass, the UUV has success in finding the contact when this event occurs (see 

Figure 6.2).   

 

 

Figure 6.2:  Contact Detection Using Sector-Based Search 
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As is the trend, the sector-based search algorithm tends to perform well when the position 

distribution is uni-modal and concentrated (in comparison to the sweep width of the sensor).  

When these features are present, the algorithm often leads to quick detection.  Unfortunately, if 

the contact is not detected quickly, the algorithm cannot maintain an effective search.  In the 

sequence of events illustrated in Figure 6.3, the problems associated with this algorithm become 

apparent. 

 

 

Figure 6.3:  Illustration of Poor Search Performance – (3) Creation of Multi-Modal Distribution, (6) 

Oscillation between Modes of a Distribution 

 

In particular, scene 3 demonstrates two major problems with this search algorithm.  In 

this scene, the sensor moves into the center of the probability mass and narrowly misses 

detection of the contact.  By moving directly into the heart of the distribution, it maximizes the 

probability of detection but also splits the distribution moving through the seaway into two 

distinct modes.  This further complicates the contact position distribution and makes it even 

harder for the UUV to recover and continue an effective search.   
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After creating an additional mode, another problem with the algorithm is made clear.  

This problem, referred to as oscillation, is observed when the UUV is located between modes of 

a distribution.  In Figure 6.3, the oscillations are clearly observed in scenes 3 and 6 as the UUV 

appears indecisive about which area of the distribution it wants to search.  As the sequence of 

events continues and the distribution becomes increasingly dispersed and complex, the 

oscillations become even more prevalent (see Figure 6.4). 

 

 

Figure 6.4:  Oscillations between Modes of a Distribution 

 

Based on the results of the twenty experimental runs, the sector-based algorithm performs 

well in the first scenario, as the average time until detection was 173.6 time steps and the total 

number of detections equaled 17.  These values suggest an effective search algorithm, but upon 
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looking at the average concluding variance for the 3 runs without detection, we discover the 

following high values:  13.63 (variance in the x position) and 147.87 (variance in the y position).  

These values support the earlier claim that the aggressive nature of the algorithm leads to quick 

detection, but in cases of missed detection, there is little to no chance of recovery.   

 

6.2.1.2.2 Scenario 2 Analysis 

When the contact chooses the route to sea with the lowest probability, the sector-based 

search performs poorly.  Because there is little opportunity for immediate detection, the search 

algorithm experiences the same problems as introduced in the Scenario 1 discussion.  It does not 

properly handle the distribution moving through the route of greatest probability, and therefore it 

has little chance to recover and reach the dispersing position distribution.  As time moves 

forward, the distributions continue to disperse and create multi-modal distributions spread over 

the map.  As the distributions become more complex, the performance drops significantly (see 

Figure 6.5).    
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Figure 6.5:  Base Case Algorithm Sequence for Scenario 2 

 

In the sequence of events for this example from Scenario 2, the problems with the base case 

algorithm continue as additional modes are created in scene 2 and oscillations are found in the 

remaining images in the sequence. 
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Contrary to the quantitative results returned during Scenario 1 testing, the base case 

algorithm in Scenario 2 produces unsatisfactory results.  Specifically, the base case algorithm did 

not detect the contact at any point during any of the twenty simulation runs.  The average 

position variances after 500 time steps were:  12.93 (variance in the x position) and 149.7 

(variance in the y position).  Therefore, the algorithm fails to detect the contact and furthermore 

leads to dispersed position distributions.  These complex distributions will make it increasingly 

difficult to locate the contact at any point further in time.   

 

6.2.1.2.3 Base Case Algorithm Conclusions 

After observing the sector-based search algorithm attempt to guide the UUV, it is 

apparent that heading towards the sector with the greatest probability mass is not sufficient.  

Under certain circumstances, it may lead to quick detections, but other times it leads to 

ineffective posterior distributions that make sustained searches next to impossible.  An algorithm 

needs to be designed to handle the complex contact position distributions and produce posterior 

distributions that allow for sustained searches.   

The first modification to the algorithm will be changing the objective function.  The 

current objective function, as seen in the previous results directs the UUV and its on-board 

sensor into the center of the probability masses.  This maneuver results in bi-modal or multi-

modal distribution which further increase the uncertainty in the location of the contact.  

Therefore, the next search algorithm implementation will use the objective function, introduced 

in Chapter 5 that seeks to minimize the uncertainty in the overall distribution.  Instead of heading 

for the center of probability mass, this objective will attempt to contract the overall distribution 

and bound the potential locations of the contact.  This will prevent the distribution from 

dispersing too quickly, increase the possibility of sustaining a prolonged search, and improve the 

probability of detecting the contact over time. 

In order to implement this objective function, the structure of the search must be adapted.  

Without simulating the effect of an action on the distribution, we do not have an adequate 

estimate of the posterior distribution and the resulting information gain.  The objective function 

will need to be evaluated over a set of simulated actions.  The action that produces the best 
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posterior distribution will then be chosen and executed.  Section 6.2.2 will provide the results 

and analysis of the path planning algorithms used to evaluate this objective function.   

 

6.2.2 Path Planning Analysis 

The next part of this chapter will focus on the analysis of the motion planning algorithm.  

After observing the weaknesses of the base case search algorithm, the objective and structure of 

the search algorithm were modified.  This updated algorithm consists of simulating the UUV 

according to a set of actions and evaluating the resulting distributions at the conclusion of the 

UUV motion plans.  The following section will provide an analysis of several methods used to 

create these motion plans.  The first part of the analysis will look at the techniques used to select 

the action space.  After choosing the best method for generating the action space, the remainder 

of Section 6.2.2 will examine the effectiveness of different motion plans by varying the path 

planning parameters introduced in 6.1.3.   

 

6.2.2.1 Action Space Analysis 

This section will investigate two different ways to form the action space used to evaluate 

the search objective function.  The posterior distributions that are generated during the 

simulations will vary depending on the allowable movements within the action space.  When 

determining the allowable actions within the action space, it is important to choose actions that 

take advantage of the given information.  Failure to form an action space based on the available 

information can lead to path plans that provide little or no information gain.  Searches into these 

areas waste valuable computation time and limit the size of the search area covered.  The 

remainder of this section will describe two different ways to form action spaces and investigate 

which method most effectively evaluates the search objective. 
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6.2.2.1.1 Discrete Action Space 

The first action space generation method examined will be discrete generation, which 

consists of a set of discrete actions as introduced in 5.3.1.1.  For this analysis, the discrete actions 

will be generated according to: 
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where the UUV has eight available actions and moves along each action for the length of one 

discrete cell.  According to this action generation scheme, no thought is placed into where the 

actions are being directed.  Instead the discrete action generation process merely enumerates 

actions uniformly around the current position of the on-board sensor.  Using this expression to 

generate actions during the path planning process can potentially require a great deal of 

computation to evaluate the entire search space.  The remainder of this section will reveal the 

computational inefficiencies associated with this method through visual illustrations. 

The computation time associated with any motion planning algorithm within the current 

state space representation is governed in part by the number of particle updates required.  As 

stated previously, the particles will be simulated and updated after each action, and therefore as 

the search depth increases, the computation time needed to evaluate the paths increases 

exponentially (see Section 5.3.3.2).  For the discrete action generation process, the search depth 

needed to cover the meaningful search area requires computation times that are unrealistic.  This 

is prevalent in dispersed position distributions.  For example in Figure 6.6, the step size of the 

actions is small in relation to the size of the search area and therefore requires a search depth of 

at least nine to reach the far edges of the position distribution.   
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Figure 6.6:  Search Depth Needed for Total Coverage with a Discrete Action Space 

 

Due to the dynamics of the information, Monte Carlo simulations will need to be 

performed for planning purposes throughout a search mission.  Therefore, the necessary 

computation for search depths that cover the entire search space might not be achievable.  One 

possible solution to this problem would be to limit the search depth to a reasonable level.  While 

this reduces the computation time, it also constrains the search space being considered.  In Figure 

6.7, the search depth is limited to four, and as a result, the motion planning process does not 

consider an entire mode of the distribution.   

 

 

Figure 6.7:  Limited Coverage Area using a Discrete Action Space 
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Faced with these limitations, the next question one must ask is how can the actions be 

generated more efficiently?  To answer this question, the problem with the discrete generation 

function must be identified.  The main problem with discrete actions is that they produce 

branches of a search tree into areas with little to no information to be gained.  This problem is 

illustrated in Figure 6.8.  By looking into all areas surrounding the UUV uniformly, numerous 

paths will be generated and evaluated in areas with little information to be gained. 

   

 

Figure 6.8:  Areas with No Information Explored by a Discrete Action Space 

 

To avoid the wasted computation, a new method for generating actions needs to be 

developed and implemented.  The next section will talk about benefits of the cluster-based action 

space introduced in Section 5.3.1.2.   

 

6.2.2.1.2 Dynamic Action Space 

An alternative action space generator discussed earlier in Section 5.3.1.2 takes advantage 

of the current state distribution when choosing the action space.  For dispersed, non-parametric 

distributions, the cluster-based generation eliminates many unnecessary branches in the path 

enumeration trees.  This method only branches UUV paths in the direction of information gain.  

By creating the actions dynamically, the motion plans can search deeper into the search space 
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with less computation.  In Figure 6.9, a similar distribution as seen in Figures 6.6, 6.7, and 6.8 is 

clustered and displayed with the initial cluster-based action headings. 

 

 

Figure 6.9:  Dynamic Action Space Illustration 

 

The clusters of information allow the motion planner to handle multiple modes and 

dispersed distributions more effectively than the discrete action generator.  By concentrating the 

actions on the centers of mass within the distribution, the UUV is guided towards the available 

information.  Because these actions more effectively cover the distributions, the dynamic action 

spaces will be used throughout the remainder of path planning analysis. 

The remainder of this section focuses on the performance of the simplest form of the 

dynamic action space search algorithm (i.e., search depth equal to 1).  Even in its simplest form, 

the dynamic action space search algorithm selects actions that guide the UUV more efficiently 

and produce more effective posterior distributions than the base case algorithm.  In particular, 

while watching the path planning algorithm in a simulated search, this algorithm outperforms the 

base case algorithm in its ability to maneuver around obstacles and in its capacity to contain the 

position distributions.  These traits are illustrated in Figure 6.10, where the images depict the 
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current UUV path and reevaluation point represented by the line connecting two triangles.  The 

triangle at one end represents the initial position in the path, while the second triangle represents 

the reevaluation point at the end of the path.  UUV will travel along this line until it reaches the 

second triangle and determines a new path at the reevaluation point.  

 

 

Figure 6.10:  Initial Sequence of Actions using the Dynamic Action Space Path Planner 

 

Due to utilization of the numerical potential field, the UUV is able to tactically plan and 

maneuver around obstacles, as witnessed in scene 1 of the sequence of images in Figure 6.10.   

In the remaining scenes in the sequence, the UUV demonstrates how it searches through the 

available information.  Unlike the sector-based search, this algorithm does not dive into the 

center of the probability mass.  Although this will reduce the number of immediate detections, 

the ability to sustain an effective search over time increases significantly.  The ability to sustain a 

prolonged search is evidenced in Figure 6.11.     
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Figure 6.11:  Continued Sequence of Dynamic Actions Leading to Detection 
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In the remaining sequences of the search, the UUV attempts to contain or “corral” the 

distribution.  By searching the distribution in this manner, the UUV reduces the uncertainty of 

the contact location and minimizes the number of modes in the distribution.  Although this is a 

much more conservative approach to locating the target, it improves the changes of recovery in 

situations where the UUV may initially fail to detect the location of the contact. 

This ability to recover can be witnessed in the experimental results from Scenario 2 

testing.  In Figure 6.12, the contact moves through the channel as the UUV searches through the 

contact distribution moving through the seaway.   

 

 

Figure 6.12:  Path Planning Search Algorithm (Search Depth = 1) 

Initial Sequence of Events for Scenario 2 

 

Throughout this initial series of images, the UUV attempts to contain and eliminate the mode 

moving through the seaway by spiraling in on the probability mass.  Without the availability of 

clue measurements at the current speed and detection radius, it is difficult for the UUV to 
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eliminate the possibility of the contact moving through the seaway.  As the scenario progresses, 

the UUV eventually eliminates the mode and makes an effort to recover (see Figure 6.13).   

 

 

Figure 6.13:  Path Planning Search Algorithm (Search Depth = 1) 

Remaining Sequence of Events for Scenario 2 

 

Unfortunately, given the current factors the UUV is not able to recover and detect the 

target moving towards Goal C.  Even though the contact may not be found, this algorithm 

controls the uncertainty in the location of the contact by keeping the position distribution within 

a few modes.  The overall performance of the search algorithm is reinforced by the quantitative 

results of the simulation runs.  In Table 6.3, the simulation results for this search algorithm are 

found.   
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Table 6.3:  Simulation Results for Path Planning Search Algorithm with Search Depth = 1 

 

 

As assumed for Scenario 1 runs, the average time until detection increases due to the 

conservative nature of the search algorithm.  Although the number of immediate detections drops 

in comparison to the base case algorithm, it is important to note that the concluding variance for 

the missed detections has been reduced slightly in both scenarios and the UUV was able to 

recover and detect the contact three times during the second scenario.  These values indicate that 

the algorithm is succeeding in containing the distribution and providing an opportunity to 

recover and potentially detect the contact later in the simulation.   

As the complexity of the search algorithm increases, the path planning algorithm will 

generate more accurate descriptions of the position distributions during the planning process.  

This improved information should enhance the selected actions and lead to more efficient 

searches.  Throughout the remaining sections, we will analyze the performance of the search 

algorithm as its complexity is increased with added search depth and increased resampling 

frequency.   

 

6.2.2.2 Search Depth Analysis 

The next part of the path planning analysis involves looking at the importance of search 

depth.  The objective of the analysis is to determine how much, if any, increasing the search 

depth improves the performance of the search.  The following sections will examine the benefit 

of increasing the search depth to a computationally reasonable level.  The different versions of 

the motion planner will be tested within the context of Scenario 1 and Scenario 2 described in the 

beginning of the chapter.  The observations from these experiments will be detailed within the 

next sections.  

146.039.83488.9Scenario 2

140.2911.7913313.6Scenario 1

Variance 
in Y

Variance 
in X

Number of 
Runs 

Contact 
Located

Average Time 
Until DetectionScenario Number

146.039.83488.9Scenario 2

140.2911.7913313.6Scenario 1

Variance 
in Y

Variance 
in X

Number of 
Runs 

Contact 
Located

Average Time 
Until DetectionScenario Number



122 

 

6.2.2.2.1 Scenario 1 Analysis 

During the analysis of Scenario 1 simulations, we find that the UUV path planner 

benefits from deeper searches.  In particular, the planner will obtain a better perspective of where 

it needs to move at the current time in order to optimize the objective function at some point in 

the future.  While the UUV may not choose the action that optimizes the objective function at the 

next time step, this strategy helps provide for more sustained searches by moving in regards to 

future conditions.  In Figure 6.14, the series of events leading to detection are displayed.  

Contrary to the basic version of the algorithm discussed previously, Figure 6.14 shows how the 

UUV evaluates the posterior distribution after simulating several steps into the future.  The path 

is again represented by the line connected to the current UUV position and the triangle marking 

the reevaluation point.  The ensuing triangles represent subsequent reevaluation points in the 

optimal path selected during the planning phase.  By increasing the length of the simulated paths 

and consequently considering more of the available information, the UUV can make more 

informed decisions which will lead to quicker elimination of modes within the probability 

distribution.  
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Figure 6.14:  Path Planning Search Algorithm (Search Depth = 2), 

Sequence of Scenario 1 Events 

 

From a quantitative perspective, the advantage of deeper searches is confirmed in the 

simulation results.  In Table 6.4 below, we find that as the search depth is increased, the average 

time until detection drops and the number of detections increases.  Because these algorithms 

provide more conservative searches, it is not a surprise to see that the base case algorithm leads 

to faster average times until detection.  Under the conditions of Scenario 1, an aggressive 

algorithm finds the contact much faster, but when either algorithm fails to detect the contact, the 

path planning searches do a much better job at reducing the variance in the posterior position 

distribution.  Because the final variances as seen in Table 6.4 are lower than those produced by 

the base case algorithm, it is fair to say that these algorithms will have a better opportunity of 

recovering and detecting the contact at a later point. 
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Table 6.4:  Comparison of Scenario 1 Results for Varying Search Depths 

 

 

6.2.2.2.2 Scenario 2 Analysis 

For this section, the search depths were applied in the second scenario.  After observing 

the simulated search operations, it is clear that these versions of the algorithm continue to 

perform better than the base case and possess an ability to carry out sustained searches.  In 

Figure 6.15, we see how the UUV uses paths with three reevaluation points (i.e., search depth 

equal to three) to determine where to move next.   
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Figure 6.15:  Path Planning Search Algorithm (Search Depth = 3), 

Sequence of Scenario 2 Events 

 

Using this strategy, the UUV is able to contain the mode moving through the seaway and 

attempts to eliminate the possibility that the contact chose the seaway route as soon as possible.  
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Because the UUV is able to contain the distribution within a few modes, it is able to sustain the 

search and ultimately detect the contact in scene 12 of Figure 6.15.   

While the benefit of deeper searches is confirmed in the results of Scenario 1, the results 

are not as conclusive in the Scenario 2 analysis.  Although all search depths prove much more 

effective than the base case algorithm, there is no significant quantitative evidence that the 

algorithms performance increases with added search depth (see Table 6.5). 

   

Table 6.5:  Comparison of Scenario 2 Results for Varying Search Depths 

 

 

Given the current design factors, the importance of increasing the search depth is 

therefore inconclusive within this scenario.  Due to the relative speeds of the UUV and contact 

and the relative sizes of the detection region and the scenario map, it is difficult to search the 

entire probability distribution.  Therefore, the true effectiveness of increasing the search depth 

within this scenario may be difficult to determine.  In order to examine the value of increasing 

the search depth within the second scenario, the design factors need to be updated to allow the 

UUV to more realistically move through the probability distribution.  
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The final algorithm modification to be tested involves increasing the sampling frequency 

during the particle filter simulation used in planning.  Currently, the motion planner resamples 

the simulated particle distribution at the reevaluation points during the path enumeration.  This 

section will examine whether increasing the frequency of sampling improves the search results.  

The motion planner should obtain better estimates of the possible information gain by increasing 

the sampling frequency, because additional information is gained during the path from the 
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current position to the reevaluation point.  This additional information gained should lead to 

more accurate posterior distributions and as a result, more effective motion plans.  Specifically, 

this strategy should prevent the UUV from splitting modes of the distribution.   Unfortunately, as 

the sampling frequency is increased, the computational workload also increases.  Therefore, the 

motion planner must balance these conflicting factors and determine how to balance the 

improvement in the search with the increased computational work due to increased sampling.   

To justify the necessity for increasing the sampling frequency, reference Figure 6.16.  

Scene 2 of this series illustrates how the UUV in certain circumstances chooses a path that splits 

a mode of a distribution.  Even though the structure of the algorithm allows it to recover from 

this maneuver, as evidenced in scene 3, an alternative action selection may have contained the 

mode and therefore further decreased the uncertainty in the location of the contact.   

 

 

Figure 6.16:  Illustration of Poor Search Performance Due to Low Resampling Frequency 

 

The UUV decision system chose this action in this particular sequence, because the 

planning algorithm did not resample along the path that stretches across the distribution.  

Because the planning algorithm only samples and resamples the particles at the reevaluation 

points, the planner assumed that this action would result in the posterior distribution with the 

least amount of uncertainty.  If instead the path planning algorithm sampled and resampled 

several times along the path, it would produce a more accurate posterior distribution.  Given this 

information, the UUV would no longer select the action that splits the distribution but would 

instead maneuver to control the scattering of the distribution.  In Figure 6.17, this change in 

trajectory is illustrated.  In this same sequence of events, the planning algorithm is operating with 
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an increased sampling frequency and therefore uses a more accurate distribution when evaluating 

the paths.  As a result, the UUV does not split through the mode but instead constricts the 

location of the particles moving through the seaway.  

 

 

Figure 6.17:  Improved Search Performance Due to Increased Sampling Frequency 

 

6.2.2.3.1 Scenario 1 Analysis 

Although the improved search performance can be seen in the specific example in the 

previous section, the quantitative results are not as convincing.  After examining the results of 

the first scenario, the average detection time increases and the number of detections decreases 

(see Table 6.6).  While these values might not indicate an improved algorithm during the first 

scenario, the increased sampling frequency allows the path planner to maintain more accurate 

posterior distributions.  Therefore, the UUV will have more information to base its decisions and 

therefore will be less likely to split distributions.  Because the UUV will not split the distribution, 

there is less probability of early detection but greater chance of sustaining a longer, more 

effective search. 
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Table 6.6:  Comparison of Scenario 1 Results with Increased Sampling Frequencies 
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6.2.2.3.2 Scenario 2 Analysis 

While the quantitative results from the first scenario do not necessarily show improved 

search performance, the analysis of the second scenario reveals the benefits of increasing the 

sampling frequency.  In the results in Table 6.7, the average time until detection decreases and 

the number of detections increases in comparison to the values from the previous simulations.  

This again supports the statement that increasing the sampling frequency creates an algorithm 

that more effectively contains the distribution.  By minimizing the uncertainty in the position 

distribution, the UUV can continue searching and increase its chances of finding the contact later 

in the simulation as evidenced in the results in Table 6.7.   

 

Table 6.7:  Comparison of Scenario 2 Results with Increased Sampling Frequencies 
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6.2.2.4 Dynamic Path Planning Algorithm Conclusions 
 

After running the dynamic action space search algorithm and observing its performance, 

it is apparent that it is more effective than the base case algorithm.  While the base case 

algorithm tends to detect the contact faster on average than the dynamic path planning algorithm, 
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it displays an inability to effectively recover and find the contact at a later time after initially 

missing the contact or searching near the unused passage to sea.  On the other hand, each 

successive version of the path planning algorithm has shown an improved ability to sustain a 

prolonged search by more effectively searching through the search environment.  These 

statements are supported by Figure 6.18 which compares the average detection time and the total 

number of detections for the each of the search algorithm variations.   

 

 

Figure 6.18:  Comparison of Average Times until Detection and Total Number of Detections 
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In addition to the differences between the two search algorithms, the path planning 

algorithm yields different results depending on the selection of search depth and sampling 

frequency.  Based on observations and unique examples, increasing the search depth and the 

sampling frequencies appear to improve the quality of the search, but within the context of the 

designed scenarios the quantitative results are inconclusive.  Perhaps these results are 

unconvincing because the UUV is not provided with the adequate speed or sensor range to cover 

the search area in the selected simulation time.  Specifically, the UUV needs to collect sufficient 

information to eliminate at least one mode prior to the position distribution reaching the open 

sea.  Eliminating the possibility of the contact moving through one of the sea corridors is 

important to sustaining an effective search.  Otherwise, after enough time has passed for the 

contact to reach the open sea, no physical obstacles or boundaries constrain its movement, and as 

a result the position distribution will quickly disperse and become increasingly complex.  In 

order for the UUV to eliminate a mode more quickly and have a chance to confirm its 

effectiveness, the design factors need to be modified or additional information needs to be 

provided.  Therefore, the next section will provide the search algorithms with more information 

by activating the capability to detect time-dated measurements. 

   

6.2.3 Time-Dated Measurement Analysis 

The last analysis will look at the effect of time-dated measurements on the performances 

of the search algorithms.  If modeled correctly, the ability to detect the clue measurements 

should increase the performance of the search algorithms.  The presence of clues should increase 

the information available in the search space and therefore lead to quicker detections.  We will 

examine two different levels of detectable clues and determine how much the presence of clue 

measurements helps the search performance.  Specifically, this section will analyze the search 

algorithms with clues detectable at levels seen in the updated design factors in Table 6.8.   
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Table 6.8:  Baseline Design Factors with Updated Maximum Detectable Clue Ages 

 

  

When the sensor possesses the ability to detect clues up to 20 or 40 time steps old, the 

search will be enhanced in two significant ways.  The most obvious advantage brought forth by 

the ability to detect clues occurs when a clue is discovered.  Whenever a clue measurement is 

detected, the uncertainty in the position distribution is significantly reduced.  In Figure 6.19, the 

sequence of images demonstrates the effect of finding a clue.  Although the contact is not within 

the UUV’s circular detection region in scene 2 below, the UUV has crossed over a portion of the 

contact’s trail.  Because the clues were dropped recently enough to be detected, the UUV is able 

to reduce the uncertainty in the distribution considerably and therefore decrease the time until 

detection.  

 

 

Figure 6.19:  Effect of Discovering a Clue 
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The other means in which the search will be enhanced involves the null measurement 

model which accounts for the additional information available in the search space.  Specifically, 

the particles are structured in a way that maintains an array of their past positions.  As the UUV 

detection region crosses over these past particle positions, the weights of the particles drop 

probabilistically as seen in Section 4.2.3.1.  This additional information in the state estimation 

process allows the UUV to shrink the probability distribution earlier and ultimately lead to more 

effective searches and faster detection times. 

  

6.2.3.1 Base Case Search Algorithm 

Prior to analyzing the path planning algorithm, the base case algorithm will again be 

tested for comparisons.  When the capability to detect clues is enabled, the sector-based search 

algorithm performance increases as evidenced in Table 6.9.  The results confirm the hypothesis 

that the clues provide additional information that enhances the search algorithms.  Specifically, 

the capability to detect these time-dated measurements leads to faster detection times and an 

increased number of detections.  In addition, the results from the base case search algorithm 

simulations reveal that as the sensor aboard the UUV is able to detect older clues, the search 

performance continues to improve.  

 

Table 6.9:  Base Case Search Algorithm Results when Clues Detectable 

95.667.5911367.7540Scenario 2

147.0712.298401.5520Scenario 2

n/an/a20128.940Scenario 1

151.0312.818147.3520Scenario 1

Variance in 
Y

Variance in 
X

Number of Runs 
Contact Located

Average 
Time Until 
Detection

Max Clue 
Age

Scenario 
Number

95.667.5911367.7540Scenario 2

147.0712.298401.5520Scenario 2

n/an/a20128.940Scenario 1

151.0312.818147.3520Scenario 1

Variance in 
Y

Variance in 
X

Number of Runs 
Contact Located

Average 
Time Until 
Detection

Max Clue 
Age

Scenario 
Number
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While the clue measurements improve the sector-based search algorithm, the algorithm 

does not account for the clues during its planning process.  Rather, the planning phase of this 

algorithm continues to simply look for the sector that contains the greatest probability of locating 

the contact.  In order to account for the presence of this information, the search algorithm must 

once again simulate the effect of an action on the distribution.  By evaluating these simulated 

actions we can obtain an estimate of how the additional information used in the measurement 

update affects the overall distribution.  Therefore, the next section will again analyze the 

performance of the path planning search algorithm. 

 

6.2.3.2 Dynamic Action Space Search Algorithm 

In Section 6.2.2, the path planning search algorithm was tested without the availability of 

clues.  In this section, the algorithm planned its maneuvers in a manner that minimized the 

uncertainty in the location of the contact.  By moving in this way, the UUV attempted to 

constrain the distribution and sustain a prolonged search for the contact.  Unfortunately, the 

algorithm performance was reduced due to the design factors defined in Table 6.8.  Therefore, 

this section seeks to determine how the path planning search algorithm will improve with the 

availability of clues.  Specifically, the analysis will examine whether the path planning algorithm 

takes better advantage of the information contained in the clues when planning search routes.    

 

6.2.3.2.1 Scenario 1 Analysis 

The analysis of the Scenario 1 simulations reveals that the performance of the UUV 

planner improves significantly when the UUV possesses the ability to detect clues.  The 

additional information gained from the clues allows the UUV to eliminate the probability 

distribution faster without increasing the detection range of the sensor or the speed of the UUV.  

With the extra information available during the planning process, the motion planner gains a 

better perspective of the probability distribution than the base case algorithm.  This enables the 

UUV to move more effectively and carrying out extended searches.   

The series of images displayed in Figure 6.20 shows how the UUV is able to constrict the 

position distribution moving through the seaway.  Due to the assumption that the contact is 
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leaving behind detectable clues, the UUV is able to reduce the uncertainty in the distribution 

much faster and find the target in less time than without clues.   

 

 

Figure 6.20:  Illustration of Path Planning Search Algorithm with Clues Available (Clue Age = 20) 

 

These assertions are confirmed in the following table.  In Table 6.10, the results from the 

first scenario simulations reveal that the performance of the path planning algorithm is increased 

significantly for search depths equal to one or two.  For these search depths, the UUV missed 

detection only once or twice and decreased its average time until detection greatly in comparison 

to the simulations without clues present.   
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Table 6.10:  Comparison of Scenario 1 Results with Clues 

13.364.5914369.75403Scenario 1

n/an/a19188.6402Scenario 1

n/an/a18197.75401Scenario 1

82.3212.959446.3203Scenario 1

n/an/a19195.75202Scenario 1

n/an/a18195.95201Scenario 1

Variance in 
Y

Variance in 
X

Number of Runs 
Contact Located

Average Time 
Until Detection

Max Clue 
Age

Search 
Depth

Scenario 
Number

13.364.5914369.75403Scenario 1

n/an/a19188.6402Scenario 1

n/an/a18197.75401Scenario 1

82.3212.959446.3203Scenario 1

n/an/a19195.75202Scenario 1

n/an/a18195.95201Scenario 1

Variance in 
Y

Variance in 
X

Number of Runs 
Contact Located

Average Time 
Until Detection

Max Clue 
Age

Search 
Depth

Scenario 
Number

 
 

Unexpectedly, the results for search depths equal to three reveal degrading search 

performance.  After observing these simulations, the poor performance can be explained 

illustratively.  In Figure 6.21, the sequence of images shows that the motion planner changes 

strategies when the search depth increases to a level that can reach the segment of the 

distribution moving through the channel.  The motion planner did not choose this route when 

clues were not present, because the UUV could not move quickly enough to reach the 

distribution moving through the channel.  With clues present, the UUV can make this trailing 

maneuver, because the particle filter is able to resample much of the distribution probabilistically 

when no clues are detected.  By quickly eliminating this portion of the position distribution, as 

seen in scene 5 in the figure below, the UUV reduces the uncertainty of the distribution soon 

enough to recover and complete the search of the distribution moving through the seaway 

passage. 

 

 



137 

 

Figure 6.21:  Explanation of Path Planning Results (Search Depth = 3) 

 

6.2.3.2.2 Scenario 2 Analysis 

In the second scenario, the results continue to show that the clue measurements 

significantly improve the performance of the search algorithm.  In many cases the additional 

information allows the UUV to eliminate a piece of the probability distribution in time to recover 

and finish the search.  In the images seen in Figure 6.22, the UUV removes the possibility of the 

contact moving through the seaway passage and recovers soon enough to search the distribution 

moving through the channel.  Without the capability to detect clues, the probability distribution 

would have dispersed and created a search area too large for the UUV to realistically cover as 

time progressed.   
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Figure 6.22:  Illustration of Path Planning Search Algorithm with Clues Available (Clue Age = 40), Sequence 
of Scenario 2 Events 
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The improved search performance is verified in the quantitative results found in Table 

6.11.   

 

Table 6.11:  Comparison of Scenario 2 Search Results with Clues 

n/an/a20160.2403Scenario 2

18.76.2214336.3402Scenario 2

21.55.6411401.22401Scenario 2

n/an/a20150203Scenario 2

59.867.0811405202Scenario 2

52.277.5510421.15201Scenario 2

Variance in 
Y

Variance in 
X

Number of Runs 
Contact Located

Average Time 
Until Detection

Max Clue 
Age

Search 
Depth

Scenario 
Number

n/an/a20160.2403Scenario 2

18.76.2214336.3402Scenario 2

21.55.6411401.22401Scenario 2

n/an/a20150203Scenario 2

59.867.0811405202Scenario 2

52.277.5510421.15201Scenario 2

Variance in 
Y

Variance in 
X

Number of Runs 
Contact Located

Average Time 
Until Detection

Max Clue 
Age

Search 
Depth

Scenario 
Number

 
 

As in Scenario 1, the results from Scenario 2 demonstrate a search algorithm that 

possesses the ability to sustain searches over extended periods of time.  Even though this 

scenario consists of the contact choosing the least probable route to sea, this algorithm is able to 

rule out the possibility of the contact moving along the high probability route in time to continue 

an effective search through the remaining distribution.  This is confirmed by the final variances 

of the simulation runs in which the UUV did not detect the contact; these variances have dropped 

noticeably compared to the results without clues.  This indicates that the motion planner uses the 

assumed clues to eliminate potential contact locations and more effectively contain the position 

distribution. 

In addition, the performance of the search algorithm with a depth equal to three appears 

exceptionally more effective in detecting the contact.  This inconsistency in performances is due 

to the altered search strategy that was depicted in Figure 6.21.  By choosing to search the channel 

route first, the UUV detects the contact rapidly within the context of the second scenario.   

 

6.2.3.3 Time-Dated Measurements Conclusions  

After enabling the UUV to detect time-dated measurements, the performance for all 

search algorithms increased.  The results of these simulations demonstrate that the clue 
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measurements have been modeled correctly and that the search algorithm utilizes the additional 

information effectively.  For both the first and second scenarios, the addition of clues decreases 

the average time to detection and increases the total number of detections.  For the first scenario, 

the base case algorithm continues to perform slightly better than the path planning algorithm 

with or without the ability to detect clues (see Figure 6.23).   

 

 

Figure 6.23:  Comparison of Average Times until Detection and Total Number of Detections for Scenario 1 
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While the base case algorithm may have slightly better results, Figure 6.23 also shows that the 

path planning algorithm’s marginal improvement is greater than the base case algorithm.  This is 

likely the result of the algorithm’s design which assumes the presence of clues in the search 

environment during the planning process.  Even though the path planning algorithm with search 

depth equal to three does not support this claim in the first scenario, we see in the second 

scenario why this inconsistency occurs.  Therefore, it appears that the path planning algorithm 

takes better advantage of the new information.   

This claim is again supported in the results from the second scenario.  In the graphs in 

Figure 6.24, the improved performances due to time-dated measurements can clearly be seen.  

When the clue measurements are introduced, the performance of all algorithms is greatly 

enhanced.  In particular, the number of detections increases significantly, because the 

information provided by the clues allow the UUV to eliminate sections of the distribution more 

quickly and recover in time to continue searching a more likely search area.   
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Figure 6.24:  Comparison of Average Times until Detection and Total Number of Detection for Scenario 2 

 

Additionally, the results from the second scenario reveal considerable improvement in the 

path planning algorithm with a search depth equal to three.  As mentioned in the earlier section, 

this improvement is due to a change in strategy for increasing search depths.  When the search 

depth increased to three, the UUV was able to search deeper into the distribution and as a result 

found it advantageous to maneuver through the channel route first and eliminate any possibility 

of the contact choosing that path.  After ruling out this route, the UUV recovers and maneuvers 

to search the other route.  This explains the discrepancy in the results of the deeper searches for 

the first and second scenario.  Overall this change in strategy seems to produce the best results as 
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this version of the algorithm yields only six missed detections when clues are detectable up to 40 

time steps after their deposit.   
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Chapter 7   
 
 
 
 

Conclusions and Future Work 
 

This chapter summarizes the contributions of this thesis and presents suggestions for 

future research related to this thesis. 

 

7.1 Thesis Contributions 

 

This thesis presented decision-making algorithms that can assist the Navy in the 

advancement of the UUV submarine track and trail capability.  It advanced these autonomous 

search operations by addressing the following planning issues:  state variable representation, 

objective function declaration, path planning structure, and time-dated measurement depiction.  

By addressing each of these issues and combining the theory of the supporting topics, ultimately 

this thesis enables a UUV to search effectively through an environment with little sensor 

information and narrow in on the location of an evading contact.  

Due to the assumed contact motion and measurement models introduced in this thesis, the 

posterior probability distributions can evolve into complex, multi-modal distributions.  Given 

that these distributions cannot be modeled with parametric distributions such as the Gaussian 

distribution, the decision system aboard the UUV estimated the state of the contact by 

implementing a particle filter to represent the dynamic, non-parametric features of the 

distributions.    Based on the relative success of the search algorithms, this thesis has shown that 

the sample-based particle distributions modeled these non-parametric distributions successfully.   
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Not only does the particle filter accurately depict the distribution of the state variables, 

but its unique structure also enabled us to construct more efficient motion planners.  Specifically, 

this thesis introduced a new action generation function that dynamically chooses actions based 

on the location of available information.  Due to the unique structure of the particle filter, the 

path planning search algorithm clustered the particles to locate sections of information when 

designing motion plans.  The cluster-based action space provided more efficient motion plans 

that considered larger portions of the search space. 

Using the clustered distribution to dynamically formulate action spaces, the implemented 

search algorithm designs intelligent motion plans that simulate the effect of actions on position 

distribution and chooses the set of actions that leads to the posterior distribution with the 

minimum uncertainty.  The results of the simulations demonstrate that the objective prevents the 

UUV from creating more complicated distributions.  Instead the objective to maximize 

information gain compels the UUV to maneuver in a way that contains the distribution and 

facilitates sustained search operations.   

Additionally, the path planning search algorithm is enhanced by increasing the search 

depth and the sampling frequency during the planning phase.  By increasing these values to 

computationally feasible levels, the UUV path planner is provided with more accurate 

representations of the position distribution while planning.  With a more accurate depiction of 

the probability distribution, the UUV can make more informed decisions that better fulfill the 

objective of the search.   

Finally, this thesis enhances the UUV search operations by enabling the motion planner 

to handle the capability to detect time-dated measurements.  Given the assumed capability to 

detect time-dated measurements (i.e., clue measurements); the search algorithm possesses a 

measurement model to process these measurements in the particle filter.  The time-dated 

measurement model determines the information within a clue measurement and uses the 

information to properly update the probability distribution.  This additional information enhances 

the search algorithm and leads to a greater number of detections and lower times until detection.  

Specifically, the information contained in the clues or the absence of clues allows the UUV 

motion planner to confine the potential locations of the contact and as a result eliminate portions 

of the distribution at a much faster rate.   
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7.2 Future Work 

 

There are several possible opportunities for future research related to the work of this 

thesis.  The first area of research that could be explored involves transitioning from contact 

detection to track and trail operations.  The work in this thesis involved the process of searching 

for and detecting an evading contact.  In future work, this research could be continued by 

examining the best methods for tracking a moving target with bearings-only measurements.  

Specifically, the research would determine what actions provide the most information on the 

location of the moving contact.  In addition, the UUV tracking algorithm would need to 

maneuver in a way that kept it in within passive sensor range but out of range of potential 

adversary sensing devices.    

The next area of research that could be investigated involves enhancing the current search 

operations.  The search algorithm could be improved by adding levels of complexity to the 

search, such as multiple UUVs, multiple contacts, or dynamic obstacles.  The work in this thesis 

looked at only one UUV searching for one evading contact.  Increasing the number of resources 

in the search area increases the complexity of the search operations and calls for more detailed 

algorithms.  This research would examine the best methods for these multiple UUVs to work 

together to locate the position of one or more contacts.  Additionally, dynamic obstacles could be 

introduced to the search environment.  Currently, the search environment consists of strictly 

static obstacles.  In future research, dynamic obstacles, such as other non-threatening vessels, 

could be added to the search environment.  The UUV would need to determine how to plan a 

path that avoids any moving obstacle in the search area. 
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